ترغب بنشر مسار تعليمي؟ اضغط هنا

The angular power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect is highly sensitive to cosmological parameters such as sigma_8 and Omega_m, but its use as a precision cosmological probe is hindered by the astrophysical uncertainties in model ing the gas pressure profile in galaxy groups and clusters. In this paper we assume that the relevant cosmological parameters are accurately known and explore the ability of current and future tSZ power spectrum measurements to constrain the intracluster gas pressure or the evolution of the gas mass fraction, f_gas. We use the CMB bandpower measurements from the South Pole Telescope and a Bayesian Markov Chain Monte Carlo (MCMC) method to quantify deviations from the standard, universal gas pressure model. We explore analytical model extensions that bring the predictions for the tSZ power into agreement with experimental data. We find that a steeper pressure profile in the cluster outskirts or an evolving f_gas have mild-to-severe conflicts with experimental data or simulations. Varying more than one parameter in the pressure model leads to strong degeneracies that cannot be broken with current observational constraints. We use simulated bandpowers from future tSZ survey experiments, in particular a possible 2000 deg^2 CCAT survey, to show that future observations can provide almost an order of magnitude better precision on the same model parameters. This will allow us to break the current parameter degeneracies and place simultaneous constraints on the gas pressure profile and its redshift evolution, for example.
We present the final release of the multi-wavelength XMM-LSS data set,covering the full survey area of 11.1 square degrees, with X-ray data processed with the latest XMM-LSS pipeline version. The present publication supersedes the Pierre et al.(2007) catalogue pertaining to the initial 5 square degrees. We provide X-ray source lists in the customary energy bands (0.5-2 and 2-10 keV) for a total of 6721 objects in the deep full-exposure catalogue and 5572 in the 10ks-limited one, above a detection likelihood of 15 in at least one band. We also provide a multiwavelength catalogue, cross-correlating our list with IR, NIR, optical and UV catalogues. Customary data products (X-ray FITS images, CFHTLS and SWIRE thumbnail images) are made available together with our interactively queriable database in Milan, while a static snapshot of the catalogues will be supplied to CDS, as soon as final acceptance is completed.
By cross-correlating large samples of galaxy clusters with publicly available radio source catalogs, we construct the volume-averaged radio luminosity function (RLF) in clusters of galaxies, and investigate its dependence on cluster redshift and mass . In addition, we determine the correlation between the cluster mass and the radio luminosity of the brightest source within 50 kpc from the cluster center. We use two cluster samples: the optically selected maxBCG cluster catalog and a composite sample of X-ray selected clusters. The radio data come from the VLA NVSS and FIRST surveys. We use scaling relations to estimate cluster masses and radii to get robust estimates of cluster volumes. We determine the projected radial distribution of sources, for which we find no dependence on luminosity or cluster mass. Background and foreground sources are statistically accounted for, and we account for confusion of radio sources by adaptively degrading the resolution of the radio source surveys. We determine the redshift evolution of the RLF under the assumption that its overall shape does not change with redshift. Our results are consistent with a pure luminosity evolution of the RLF in the range 0.1 < z < 0.3 from the optical cluster sample. The X-ray sample extends to higher redshift and yields results also consistent with a pure luminosity evolution. We find no direct evidence of a dependence of the RLF on cluster mass from the present data, although the data are consistent with the most luminous sources only being found in high-mass systems.
227 - M. Nord , K. Basu , F. Pacaud 2009
We used the APEX-SZ and LABOCA bolometer cameras on the APEX telescope to map the decrement of the Sunyaev-Zeldovich effect at 150 GHz and the increment at 345 GHz toward the galaxy cluster Abell 2163. The SZE images were used to model the radial den sity and temperature distribution of the ICM, and to derive the gas mass fraction in the cluster under the assumption of hydrostatic equilibrium. We used the isothermal beta model to fit the SZE decrement/increment radial profiles. We performed a simple, non-parametric de-projection of the radial density and temperature profiles, in conjunction with XMM-Newton X-ray data, under the simplifying assumption of spherical symmetry. We combined the peak SZE signals derived in this paper with published SZE measurements of this cluster to derive the cluster line-of-sight bulk velocity and the central Comptonization, using priors on the ICM temperature. We find that the best-fit isothermal model to the SZE data is consistent with the ICM properties implied by the X-ray data, particularly inside the central 1 Mpc radius. Although the assumptions of hydrostatic equilibrium and spherical symmetry may not be optimal for this complex system, the results obtained under these assumptions are consistent with X-ray and weak-lensing measurements. This shows the applicability of the simple joint SZE and X-ray de-projection technique described in this paper for clusters with a wide range of dynamical states. (Abridged)
306 - M. Pierre , F. Pacaud , J.B. Melin 2007
The well defined selection function of the XMM-LSS survey enables a simultaneous modelling of the observed cluster number counts and of the evolution of the L-T relation. We present results pertaining to the first 5 deg2 for a well controlled sample comprising 30 objects: they are compatible with the WMAP3 parameter set along with cluster self-similar evolution. Extending such a survey to 200 deg2 would (1) allow discriminating between the major scenarios of the cluster L-T evolution and (2) provide a unique self-sufficient determination of sigma8 and Gamma with an accuracy of ~ 5% and 10% respectively, when adding mass information from weak lensing and S-Z observations.
98 - F. Pacaud , M. Pierre , C. Adami 2007
We present a sample of 29 galaxy clusters from the XMM-LSS survey over an area of some 5deg2 out to a redshift of z=1.05. The sample clusters, which represent about half of the X-ray clusters identified in the region, follow well defined X-ray select ion criteria and are all spectroscopically confirmed. For all clusters, we provide X-ray luminosities and temperatures as well as masses. The cluster distribution peaks around z=0.3 and T =1.5 keV, half of the objects being groups with a temperature below 2 keV. Our L-T(z) relation points toward self-similar evolution, but does not exclude other physically plausible models. Assuming that cluster scaling laws follow self-similar evolution, our number density estimates up to z=1 are compatible with the predictions of the concordance cosmology and with the findings of previous ROSAT surveys. Our well monitored selection function allowed us to demonstrate that the inclusion of selection effects is essential for the correct determination of the evolution of the L-T relation, which may explain the contradictory results from previous studies. Extensive simulations show that extending the survey area to 10deg2 has the potential to exclude the non-evolution hypothesis, but that constraints on more refined ICM models will probably be limited by the large intrinsic dispersion of the L-T relation. We further demonstrate that increasing the dispersion in the scaling laws increases the number of detectable clusters, hence generating further degeneracy [in addition to sigma8, Omega_m, L(M,z) and T(M,z)] in the cosmological interpretation of the cluster number counts. We provide useful empirical formulae for the cluster mass-flux and mass-count-rate relations as well as a comparison between the XMM-LSS mass sensitivity and that of forthcoming SZ surveys.
Following the presentation of the XMM-LSS X-ray source detection package by Pacaud et al., we provide the source lists for the first 5.5 surveyed square degrees. The catalogues pertain to the [0.5-2] and [2-10] keV bands and contain in total 3385 poi nt-like or extended sources above a detection likelihood of 15 in either band. The agreement with deep logN-logS is excellent. The main parameters considered are position, countrate, source extent with associated likelihood values. A set of additional quantities such as astrometric corrections and fluxes are further calculated while errors on the position and countrate are deduced from simulations. We describe the construction of the band-merged catalogue allowing rapid sub-sample selection and easy cross-correlation with external multi-wavelength catalogues. A small optical CFHTLS multi-band subset of objects is associated wich each source along with an X-ray/optical overlay. We make the full X-ray images available in FITS format. The data are available at CDS and, in a more extended form, at the Milan XMM-LSS database.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا