ترغب بنشر مسار تعليمي؟ اضغط هنا

The XMM-LSS catalogue: X-ray sources and associated multiwavelength data. Version II

205   0   0.0 ( 0 )
 نشر من قبل Lucio Chiappetti
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the final release of the multi-wavelength XMM-LSS data set,covering the full survey area of 11.1 square degrees, with X-ray data processed with the latest XMM-LSS pipeline version. The present publication supersedes the Pierre et al.(2007) catalogue pertaining to the initial 5 square degrees. We provide X-ray source lists in the customary energy bands (0.5-2 and 2-10 keV) for a total of 6721 objects in the deep full-exposure catalogue and 5572 in the 10ks-limited one, above a detection likelihood of 15 in at least one band. We also provide a multiwavelength catalogue, cross-correlating our list with IR, NIR, optical and UV catalogues. Customary data products (X-ray FITS images, CFHTLS and SWIRE thumbnail images) are made available together with our interactively queriable database in Milan, while a static snapshot of the catalogues will be supplied to CDS, as soon as final acceptance is completed.



قيم البحث

اقرأ أيضاً

Following the presentation of the XMM-LSS X-ray source detection package by Pacaud et al., we provide the source lists for the first 5.5 surveyed square degrees. The catalogues pertain to the [0.5-2] and [2-10] keV bands and contain in total 3385 poi nt-like or extended sources above a detection likelihood of 15 in either band. The agreement with deep logN-logS is excellent. The main parameters considered are position, countrate, source extent with associated likelihood values. A set of additional quantities such as astrometric corrections and fluxes are further calculated while errors on the position and countrate are deduced from simulations. We describe the construction of the band-merged catalogue allowing rapid sub-sample selection and easy cross-correlation with external multi-wavelength catalogues. A small optical CFHTLS multi-band subset of objects is associated wich each source along with an X-ray/optical overlay. We make the full X-ray images available in FITS format. The data are available at CDS and, in a more extended form, at the Milan XMM-LSS database.
We present optical identifications and a multi-band catalogue of a sample of 478 X-ray sources in the XMM and Chandra surveys of the central 0.6 deg^2 of the ELAIS-S1 field. The optical/infrared counterpart of each X-ray source was identified using R and IRAC 3.6 um bands. This method was complemented by the precise positions obtained through Chandra observations. Approximately 94% of the counterparts are detected in the R band, while the remaining are blank fields in the optical down to R~24.5, but have a near-infrared counterpart detected by IRAC within 6 arcsec from the XMM centroid. The multi-band catalogue contains photometry in ten photometric bands (B to the MIPS 24 um). We determined redshift and classification for 237 sources (~50% of the sample) brighter than R=24. We classified 47% of the sources with spectroscopic redshift as broad-line active galactic nuclei (BL AGNs) with z=0.1-3.5, while sources without broad-lines are about 46% of the spectroscopic sample and are found up to z=2.6. We identified 11 type 2 QSOs among the sources with X/O>8, with z=0.9-2.6, high 2-10 keV luminosity (log(L2-10keV)>=43.8 erg/s) and hard X-ray colors suggesting large absorbing columns at the rest frame (logN_H up to 23.6 cm^-2). BL AGNs show on average blue optical-to-near-infrared colors, softer X-ray colors and X-ray-to-optical colors typical of optically selected AGNs. Conversely, narrow-line sources show redder optical colors, harder X-ray flux ratio and span a wider range of X-ray-to-optical colors. On average the SEDs of high-luminosity BL AGNs resemble the power-law typical of unobscured AGNs. The SEDs of NOT BL AGNs are dominated by the galaxy emission in the optical/near-infrared, and show a rise in the mid-infrared which suggests the presence of an obscured active nucleus.
130 - C. Adami , A. Mazure , M. Pierre 2010
XMM and Chandra opened a new area for the study of clusters of galaxies. Not only for cluster physics but also, for the detection of faint and distant clusters that were inaccessible with previous missions. This article presents 66 spectroscopically confirmed clusters (0.05<z<1.5) within an area of 6 deg2 enclosed in the XMM-LSS survey. Almost two thirds have been confirmed with dedicated spectroscopy only and 10% have been confirmed with dedicated spectroscopy supplemented by literature redshifts. Sub-samples, or classes, of extended-sources are defined in a two-dimensional X-ray parameter space allowing for various degrees of completeness and contamination. We describe the procedure developed to assess the reality of these cluster candidates using the CFHTLS photometric data and spectroscopic information from our own follow-up campaigns. Most of these objects are low mass clusters, hence constituting a still poorly studied population. In a second step, we quantify correlations between the optical properties such as richness or velocity dispersion and the cluster X-ray luminosities. We examine the relation of the clusters to the cosmic web. Finally, we review peculiar structures in the surveyed area like very distant clusters and fossil groups.
186 - E.Chiosi , M.Orio , F. Bernardini 2014
We searched optical/UV/IR counterparts of seven supersoft X-ray sources (SSS) in M31 in the Hubble Space Telescope (HST) Panchromatic Hubble Andromeda Treasury (PHAT) archival images and photometric catalog. Three of the SSS were transient, the other four are persistent sources. The PHAT offers the opportunity to identify SSS hosting very massive white dwarfs that may explode as type Ia supernovae in single degenerate binaries, with magnitudes and color indexes typical of symbiotic stars, high mass close binaries, or systems with optically luminous accretion disks. We find evidence that the transient SSS were classical or recurrent novae; two likely counterparts we identified are probably symbiotic binaries undergoing mass transfer at a very high rate. There is a candidate accreting white dwarf binary in the error circle of one of the persistent sources, r3-8. In the spatial error circle of the best studied SSS in M31, r2-12, no red giants or AGB stars are sufficiently luminous in the optical and UV bands to be symbiotic systems hosting an accreting and hydrogen burning white dwarf. This SSS has a known modulation of the X-ray flux with a 217.7 s period, and we measured an upper limit on its derivative, 0.82 x 10(-11). This limit can be reconciled with the rotation period of a white dwarf accreting at high rate in a binary with a few-hours orbital period. However, there is no luminous counterpart with color indexes typical of an accretion disk irradiated by a hot central source. Adopting a semi-empirical relationship, the upper limit for the disk optical luminosity implies an upper limit of only 169 minutes for the orbital period of the white dwarf binary.
We use WIRC, IR images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources (Zezas et al. 2006) to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR c ounterparts, almost doubling the number of IR counterparts to X-ray sources first identified in Clark et al. (2007). In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, K_s ~16 mag, with (J-K_s) = 1.1 mag. We then use archival HST images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star cluster counterparts, we find optical matches for 27 of these sources. Using Bruzual-Charlot spectral evolutionary models, we find that most clusters associated with an X-ray source are massive, ~10^6 M_sun, young, ~10^6 yr, with moderate metallicities, Z=0.05.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا