ترغب بنشر مسار تعليمي؟ اضغط هنا

The lower limit to the distribution of orbital periods P for the current population of close-in exoplanets shows a distinctive discontinuity located at approximately one Jovian mass. Most smaller planets have orbital periods longer than P~2.5 days, w hile higher masses are found down to P~1 day. We analyze whether this observed mass-period distribution could be explained in terms of the combined effects of stellar tides and the interactions of planets with an inner cavity in the gaseous disk. We performed a series of hydrodynamical simulations of the evolution of single-planet systems in a gaseous disk with an inner cavity mimicking the inner boundary of the disk. The subsequent tidal evolution is analyzed assuming that orbital eccentricities are small and stellar tides are dominant. We find that most of the close-in exoplanet population is consistent with an inner edge of the protoplanetary disk being located at approximately P>2 days for solar-type stars, in addition to orbital decay having been caused by stellar tides with a specific tidal parameter on the order of Q*=10^7. The data is broadly consistent with planets more massive than one Jupiter mass undergoing type II migration, crossing the gap, and finally halting at the interior 2/1 mean-motion resonance with the disk edge. Smaller planets do not open a gap in the disk and remain trapped in the cavity edge. CoRoT-7b appears detached from the remaining exoplanet population, apparently requiring additional evolutionary effects to explain its current mass and semimajor axis.
Recent observations of exoplanets by direct imaging, reveal that giant planets orbit at a few dozens to more than a hundred of AU from their central star. The question of the origin of these planets challenges the standard theories of planet formatio n. We propose a new way of obtaining such far planets, by outward migration of a pair of planets formed in the 10 AU region. Two giant planets in mean motion resonance in a common gap in the protoplanetary disk migrate outwards, if the inner one is significantly more massive than the outer one. Using hydrodynamical simulations, we show that their semi major axes can increase by almost one order of magnitude. In a flared disk, the pair of planets should reach an asymptotic radius. This mechanism could account for the presence of Fomalhaut b ; then, a second, more massive planet, should be orbiting Fomalhaut at about 75 AU.
175 - C. Baruteau 2008
We investigate the tidal interaction between a low-mass planet and a self-gravitating protoplanetary disk, by means of two-dimensional hydrodynamic simulations. We first show that considering a planet freely migrating in a disk without self-gravity l eads to a significant overestimate of the migration rate. The overestimate can reach a factor of two for a disk having three times the surface density of the minimum mass solar nebula. Unbiased drift rates may be obtained only by considering a planet and a disk orbiting within the same gravitational potential. In a second part, the disk self-gravity is taken into account. We confirm that the disk gravity enhances the differential Lindblad torque with respect to the situation where neither the planet nor the disk feels the disk gravity. This enhancement only depends on the Toomre parameter at the planet location. It is typically one order of magnitude smaller than the spurious one induced by assuming a planet migrating in a disk without self-gravity. We confirm that the torque enhancement due to the disk gravity can be entirely accounted for by a shift of Lindblad resonances, and can be reproduced by the use of an anisotropic pressure tensor. We do not find any significant impact of the disk gravity on the corotation torque.
111 - C. Baruteau 2007
We consider the angular momentum exchange at the corotation resonance between a two-dimensional gaseous disk and a uniformly rotating external potential, assuming that the disk flow is adiabatic. We first consider the linear case for an isolated reso nance, for which we give an expression of the corotation torque that involves the pressure perturbation, and which reduces to the usual dependence on the vortensity gradient in the limit of a cold disk. Although this expression requires the solution of the hydrodynamic equations, it provides some insight into the dynamics of the corotation region. In the general case, we find an additional dependence on the entropy gradient at corotation. This dependence is associated to the advection of entropy perturbations. These are not associated to pressure perturbations. They remain confined to the corotation region, where they yield a singular contribution to the corotation torque. In a second part, we check our torque expression by means of customized two-dimensional hydrodynamical simulations. In a third part, we contemplate the case of a planet embedded in a Keplerian disk, assumed to be adiabatic. We find an excess of corotation torque that scales with the entropy gradient, and we check that the contribution of the entropy perturbation to the torque is in agreement with the expression obtained from the linear analysis. We finally discuss some implications of the corotation torque expression for the migration of low mass planets in the regions of protoplanetary disks where the flow is radiatively inefficient on the timescale of the horseshoe U-turns.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا