ترغب بنشر مسار تعليمي؟ اضغط هنا

Long range outward migration of giant planets, with application to Fomalhaut b

147   0   0.0 ( 0 )
 نشر من قبل Aur\\'elien Crida
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations of exoplanets by direct imaging, reveal that giant planets orbit at a few dozens to more than a hundred of AU from their central star. The question of the origin of these planets challenges the standard theories of planet formation. We propose a new way of obtaining such far planets, by outward migration of a pair of planets formed in the 10 AU region. Two giant planets in mean motion resonance in a common gap in the protoplanetary disk migrate outwards, if the inner one is significantly more massive than the outer one. Using hydrodynamical simulations, we show that their semi major axes can increase by almost one order of magnitude. In a flared disk, the pair of planets should reach an asymptotic radius. This mechanism could account for the presence of Fomalhaut b ; then, a second, more massive planet, should be orbiting Fomalhaut at about 75 AU.

قيم البحث

اقرأ أيضاً

During their formation, emerging protoplanets tidally interact with their natal disks. Proto-gas-giant planets, with Hills radius larger than the disk thickness, open gaps and quench gas flow in the vicinity of their orbits. It is usually assumed tha t their type II migration is coupled to the viscous evolution of the disk. Although this hypothesis provides an explanation for the origin of close-in planets, it also encounter predicament on the retention of long-period orbits for most gas giant planets. Moreover, numerical simulations indicate that planets migrations are not solely determined by the viscous diffusion of their natal disk. Here we carry out a series of hydrodynamic simulations combined with analytic studies to examine the transition between different paradigms of type II migration. We find a range of planetary mass for which gas continues to flow through a severely depleted gap so that the surface density distribution in the disk region beyond the gap is maintained in a quasi-steady state. The associated gap profile modifies the location of corotation & Lindblad resonances. In the proximity of the planets orbit, high-order Lindblad & corotation torque are weakened by the gas depletion in the gap while low-order Lindblad torques near the gap walls preserves their magnitude. Consequently, the intrinsic surface density distribution of the disk determines delicately both pace and direction of planets type II migration. We show that this effect might stall the inward migration of giant planets and preserve them in disk regions where the surface density is steep.
We present a numerical study of rapid, so called type III migration for Jupiter-sized planets embedded in a protoplanetary disc. We limit ourselves to the case of outward migration, and study in detail its evolution and physics, concentrating on the structure of the co-rotation and circumplanetary regions, and processes for stopping migration. We also consider the dependence of the migration behaviour on several key parameters. We perform this study using global, two-dimensional hydrodynamical simulations with adaptive mesh refinement. We find that the outward directed type III migration can be started if the initial conditions support $Z > 1$, that corresponds to initial value $M_rmn{Delta} ga 1.5$. Unlike the inward directed migration, in the outward migration the migration rate increases due to the growing of the volume of the co-orbital region. We find the migration to be strongly dependent on the rate of the mass accumulation in the circumplanetary disc, leading to two possible regimes of migration, fast and slow. The structure of the co-orbital region and the stopping mechanism differ between these two regimes.
Planets form in the discs of gas and dust that surround young stars. It is not known whether gas giant planets on wide orbits form the same way as Jupiter or by fragmentation of gravitationally unstable discs. Here we show that a giant planet, which has formed in the outer regions of a protostellar disc, initially migrates fast towards the central star (migration timescale ~10,000 yr) while accreting gas from the disc. However, in contrast with previous studies, we find that the planet eventually opens up a gap in the disc and the migration is essentially halted. At the same time, accretion-powered radiative feedback from the planet, significantly limits its mass growth, keeping it within the planetary mass regime (i.e. below the deuterium burning limit) at least for the initial stages of disc evolution. Giant planets may therefore be able to survive on wide orbits despite their initial fast inward migration, shaping the environment in which terrestrial planets that may harbour life form.
The discovery of giant planets in wide orbits represents a major challenge for planet formation theory. In the standard core accretion paradigm planets are expected to form at radial distances $lesssim 20$ au in order to form massive cores (with mass es $gtrsim 10~textrm{M}_{oplus}$) able to trigger the gaseous runaway growth before the dissipation of the disc. This has encouraged authors to find modifications of the standard scenario as well as alternative theories like the formation of planets by gravitational instabilities in the disc to explain the existence of giant planets in wide orbits. However, there is not yet consensus on how these systems are formed. In this letter, we present a new natural mechanism for the formation of giant planets in wide orbits within the core accretion paradigm. If photoevaporation is considered, after a few Myr of viscous evolution a gap in the gaseous disc is opened. We found that, under particular circumstances planet migration becomes synchronised with the evolution of the gap, which results in an efficient outward planet migration. This mechanism is found to allow the formation of giant planets with masses $M_plesssim 1 M_{rm Jup}$ in wide stable orbits as large as $sim$130 au from the central star.
We report the discovery of Kepler-432b, a giant planet ($M_b = 5.41^{+0.32}_{-0.18} M_{rm Jup}, R_b = 1.145^{+0.036}_{-0.039} R_{rm Jup}$) transiting an evolved star $(M_star = 1.32^{+0.10}_{-0.07} M_odot, R_star = 4.06^{+0.12}_{-0.08} R_odot)$ with an orbital period of $P_b = 52.501129^{+0.000067}_{-0.000053}$ days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of $e = 0.5134^{+0.0098}_{-0.0089}$, which we also measure independently with asterodensity profiling (AP; $e=0.507^{+0.039}_{-0.114}$), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; $M_c sin{i_c} = 2.43^{+0.22}_{-0.24} M_{rm Jup}, P_c = 406.2^{+3.9}_{-2.5}$ days), and adaptive optics imaging revealed a nearby (0farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise asteroseismic oscillations, which enable precise measurements of the stellar mass, radius and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well-aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5-day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا