ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a pump-probe set-up to analyse the properties of the collective excitation spectrum of a spinor polariton fluid. By using a linear response approximation scheme, we carry on a complete classification of all excitation spectra, as well as t heir intrinsic degree of polarisation, in terms of two experimentally tunable parameters only, the mean-field polarisation angle and a rescaled pump detuning. We evaluate the system response to the external probe, and show that the transmitted light can undergo a spin rotation along the dispersion for spectra that we classify as diffusive-like. We show that in this case, the spin flip predicted along the dispersion is enhanced when the system is close to a parametrically amplified instability.
We present the theoretical prediction of spontaneous rotating vortex rings in a parametrically driven quantum fluid of polaritons -- coherent superpositions of coupled quantum well excitons and microcavity photons. These rings arise not only in the a bsence of any rotating drive, but also in the absence of a trapping potential, in a model known to map quantitatively to experiments. We begin by proposing a novel parametric pumping scheme for polaritons, with circular symmetry and radial currents, and characterize the resulting nonequilibrium condensate. We show that the system is unstable to spontaneous breaking of circular symmetry via a modulational instability, following which a vortex ring with large net angular momentum emerges, rotating in one of two topologically distinct states. Such rings are robust and carry distinctive experimental signatures, and so they could find applications in the new generation of polaritonic devices.
We consider the possible phases of microcavity polaritons tuned near a bipolariton Feshbach resonance. We show that, as well as the regular polariton superfluid phase, a molecular superfluid exists, with (quasi-)long-range order only for pairs of pol aritons. We describe the experimental signatures of this state. Using variational approaches we find the phase diagram (critical temperature, density and exciton-photon detuning). Unlike ultracold atoms, the molecular superfluid is not inherently unstable, and our phase diagram suggests it is attainable in current experiments.
We study the stability of a Bose-Fermi system loaded into an array of coupled one-dimensional (1D) tubes, where bosons and fermions experience different dimensions: Bosons are heavy and strongly localized in the 1D tubes, whereas fermions are light a nd can hop between the tubes. Using the 174Yb-6Li system as a reference, we obtain the equilibrium phase diagram. We find that, for both attractive and repulsive interspecies interaction, the exact treatment of 1D bosons via the Bethe ansatz implies that the transitions between pure fermion and any phase with a finite density of bosons can only be first order and never continuous, resulting in phase separation in density space. In contrast, the order of the transition between the pure boson and the mixed phase can either be second or first order depending on whether fermions are allowed to hop between the tubes or they also are strictly confined in 1D. We discuss the implications of our findings for current experiments on 174Yb-6Li mixtures as well as Fermi-Fermi mixtures of light and heavy atoms in a mixed dimensional optical lattice system.
We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra in three different categories [C. Ciuti and I. Carusotto, physica status solidi (b) 242, 2224 (2005)]: linear for zero, diffusive-like for positive, and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work [E. Cancellieri et al., Phys. Rev. B 82, 224512 (2010)], where the drag was determined numerically for a finite-size defect.
We study the properties of a binary microcavity polariton superfluid coherently injected by two lasers. The crossover from the supersonic to subsonic regime, where motion is frictionless, is described by evaluating the Bogoliubov spectra. We show tha t according to the Landau criteria, the coupling between the two components precludes the existence of superfluidity just for one component but not for the other. By analysing the drag force exerted on a defect, we give a recipe to experimentally address the crossover from the supersonic to the subsonic regime.
We study, both theoretically and experimentally, the occurrence of topological defects in polariton superfluids in the optical parametric oscillator (OPO) regime. We explain in terms of local supercurrents the deterministic behaviour of both onset an d dynamics of spontaneous vortex-antivortex pairs generated by perturbing the system with a pulsed probe. Using a generalised Gross-Pitaevskii equation, including photonic disorder, pumping and decay, we elucidate the reason why topological defects form in couples and can be detected by direct visualizations in multi-shot OPO experiments.
We study the properties of propagating polariton wave-packets and their connection to the stability of doubly charged vortices. Wave-packet propagation and related photoluminescence spectra exhibit a rich behaviour dependent on the excitation regime. We show that, because of the non-quadratic polariton dispersion, doubly charged vortices are stable only when initiated in wave-packets propagating at small velocities. Vortices propagating at larger velocities, or those imprinted directly into the polariton optical parametric oscillator (OPO) signal and idler are always unstable to splitting.
We study non-equilibrium polariton superfluids in the optical parametric oscillator (OPO) regime using a two-component Gross-Pitaevskii equation with pumping and decay. We identify a regime above OPO threshold, where the system undergoes spontaneous symmetry breaking and is unstable towards vortex formation without any driving rotation. Stable vortex solutions differ from metastable ones; the latter can persist in OPO superfluids but can only be triggered externally. Both spontaneous and triggered vortices are characterised by a generalised healing length, specified by the OPO parameters only.
We analyse the spatial and temporal coherence properties of a two-dimensional and finite sized polariton condensate with parameters tailored to the recent experiments which have shown spontaneous and thermal equilibrium polariton condensation in a Cd Te microcavity [J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, et al., Nature 443 (7110) (2006) 409]. We obtain a theoretical estimate of the thermal length, the lengthscale over which full coherence effectively exists (and beyond which power-law decay of correlations in a two-dimensional condensate occurs), of the order of 5 micrometers. In addition, the exponential decay of temporal coherence predicted for a finite size system is consistent with that found in the experiment. From our analysis of the luminescence spectra of the polariton condensate, taking into account pumping and decay, we obtain a dispersionless region at small momenta of the order of 4 degrees. In addition, we determine the polariton linewidth as a function of the pump power. Finally, we discuss how, by increasing the exciton-photon detuning, it is in principle possible to move the threshold for condensation from a region of the phase diagram where polaritons can be described as a weakly interacting Bose gas to a region where instead the composite nature of polaritons becomes important.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا