ترغب بنشر مسار تعليمي؟ اضغط هنا

In this review, we present a simple guide for researchers to obtain pseudo-random samples with censored data. We focus our attention on the most common types of censored data, such as type I, type II, and random censoring. We discussed the necessary steps to sample pseudo-random values from long-term survival models where an additional cure fraction is informed. For illustrative purposes, these techniques are applied in the Weibull distribution. The algorithms and codes in R are presented, enabling the reproducibility of our study.
328 - P. A. M. van Hoof 2020
The gas that is present in the interstellar medium is usually very far removed from (local) thermodynamic equilibrium, and in some cases may also not be in a steady-state equilibrium with its surroundings. The physics of this material is complex and one needs a sophisticated numerical code to study it. For this purpose the open-source photoionization code Cloudy was created. It models the physical state of the gas and predicts the spectrum that it emits. Cloudy is continually being developed to improve the treatment of the microphysical processes and the database of fundamental data that it uses. In this paper we will discuss how we are developing the code to improve our high-density predictions by implementing better collisional-radiative models for all ions. We will also briefly discuss the experimental mode in Cloudy to model gas that is not in steady-state equilibrium and present a preliminary model of recombining gas in a planetary nebula that is on the cooling track. We finish with a short discussion of how we are speeding up the code by using parallelization.
At intermediate to high densities, electron (de-)excitation collisions are the dominant process for populating or depopulating high Rydberg states. In particular, the accurate knowledge of the energy changing ($n$-changing) collisional rates is deter minant for predicting the radio recombination spectra of gaseous nebula. The different datasets present in the literature come either from impact parameter calculations or semi-empirical fits and the rate coefficients agree within a factor of two. We show in this paper that these uncertainties cause errors lower than 5% in the emission of radio recombination lines (RRL) of most ionized plasmas of typical nebulae. However, in special circumstances where the transitions between Rydberg levels are amplified by maser effects, the errors can increase up to 20%. We present simulations of the optical depth and H$nalpha$ line emission of Active Galactic Nuclei (AGN) Broad Line Regions (BLRs) and the Orion Nebula Blister to showcase our findings.
We compare the results of the semi-classical (SC) and quantum-mechanical (QM) formalisms for angular-momentum changing transitions in Rydberg atom collisions given by Vrinceanu & Flannery, J. Phys. B 34, L1 (2001), and Vrinceanu, Onofrio & Sadeghpour , ApJ 747, 56 (2012), with those of the SC formalism using a modified Monte Carlo realization. We find that this revised SC formalism agrees well with the QM results. This provides further evidence that the rates derived from the QM treatment are appropriate to be used when modelling recombination through Rydberg cascades, an important process in understanding the state of material in the early universe. The rates for $Deltaell=pm1$ derived from the QM formalism diverge when integrated to sufficiently large impact parameter, $b$. Further to the empirical limits to the $b$ integration suggested by Pengelly & Seaton, MNRAS 127, 165 (1964), we suggest that the fundamental issue causing this divergence in the theory is that it does not fully cater for the finite time taken for such distant collisions to complete.
Accurate rates for energy-degenerate l-changing collisions are needed to determine cosmological abundances and recombination. There are now several competing theories for the treatment of this process, and it is not possible to test these experimenta lly. We show that the H I two-photon continuum produced by astrophysical nebulae is strongly affected by l-changing collisions. We perform an analysis of the different underlying atomic processes and simulate the recombination and two-photon spectrum of a nebula containing H and He. We provide an extended set of effective recombination coefficients and updated l-changing 2s-2p transition rates using several competing theories. In principle, accurate astronomical observations could determine which theory is correct.
Cosmological models can be constrained by determining primordial abundances. Accurate predictions of the He I spectrum are needed to determine the primordial helium abundance to a precision of $< 1$% in order to constrain Big Bang Nucleosynthesis mod els. Theoretical line emissivities at least this accurate are needed if this precision is to be achieved. In the first paper of this series, which focused on H I, we showed that differences in $l$-changing collisional rate coefficients predicted by three different theories can translate into 10% changes in predictions for H I spectra. Here we consider the more complicated case of He atoms, where low-$l$ subshells are not energy degenerate. A criterion for deciding when the energy separation between $l$ subshells is small enough to apply energy-degenerate collisional theories is given. Moreover, for certain conditions, the Bethe approximation originally proposed by Pengelly & Seaton (1964) is not sufficiently accurate. We introduce a simple modification of this theory which leads to rate coefficients which agree well with those obtained from pure quantal calculations using the approach of Vrinceanu et al. (2012). We show that the $l$-changing rate coefficients from the different theoretical approaches lead to differences of $sim 10$% in He I emissivities in simulations of H II regions using spectral code Cloudy.
Hydrogen and helium emission lines in nebulae form by radiative recombination. This is a simple process which, in principle, can be described to very high precision. Ratios of He I and H I emission lines can be used to measure the He$^+$/H$^+$ abunda nce ratio to the same precision as the recombination rate coefficients. This paper investigates the controversy over the correct theory to describe dipole $l$-changing collisions ($nlrightarrow nl=lpm 1$) between energy-degenerate states within an $n$-shell. The work of Pengelly & Seaton (1964) has, for half-a-century, been considered the definitive study which solved the problem. Recent work by Vrinceanu et al.(2012) recommended the use of rate coefficients from a semi-classical approximation which are nearly an order of magnitude smaller than those of Pengelly & Seaton (1964), with the result that significantly higher densities are needed for the $nl$ populations to come into local thermodynamic equilibrium. Here, we compare predicted H~I emissivities from the two works and find widespread differences, of up to $approx 10$%. This far exceeds the 1% precision required to obtain the primordial He/H abundance ratio from observations so as to constrain Big Bang cosmologies. We recommend using the rate coefficients of Pengelly & Seaton (1964) for $l$-changing collisions, to describe the H recombination spectrum, based-on their quantum mechanical representation of the long-range dipole interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا