ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we aim at providing a consistent analysis of the dust properties from metal-poor to metal-rich environments by linking them to fundamental galactic parameters. We consider two samples of galaxies: the Dwarf Galaxy Survey (DGS) and KINGF ISH, totalling 109 galaxies, spanning almost 2 dex in metallicity. We collect infrared (IR) to submillimetre (submm) data for both samples and present the complete data set for the DGS sample. We model the observed spectral energy distributions (SED) with a physically-motivated dust model to access the dust properties. Using a different SED model (modified blackbody), dust composition (amorphous carbon), or wavelength coverage at submm wavelengths results in differences in the dust mass estimate of a factor two to three, showing that this parameter is subject to non-negligible systematic modelling uncertainties. For eight galaxies in our sample, we find a rather small excess at 500 microns (< 1.5 sigma). We find that the dust SED of low-metallicity galaxies is broader and peaks at shorter wavelengths compared to more metal-rich systems, a sign of a clumpier medium in dwarf galaxies. The PAH mass fraction and the dust temperature distribution are found to be driven mostly by the specific star-formation rate, SSFR, with secondary effects from metallicity. The correlations between metallicity and dust mass or total-IR luminosity are direct consequences of the stellar mass-metallicity relation. The dust-to-stellar mass ratios of metal-rich sources follow the well-studied trend of decreasing ratio for decreasing SSFR. The relation is more complex for highly star-forming low-metallicity galaxies and depends on the chemical evolutionary stage of the source (i.e., gas-to-dust mass ratio). Dust growth processes in the ISM play a key role in the dust mass build-up with respect to the stellar content at high SSFR and low metallicity. (abridged)
We present new photometric data from our Herschel Key Programme, the Dwarf Galaxy Survey (DGS), dedicated to the observation of the gas and dust in 48 low-metallicity environments. They were observed with PACS and SPIRE onboard Herschel at 70,100,160 ,250,350, and 500 microns. We focus on a systematic comparison of the derived FIR properties (FIR luminosity, dust mass, dust temperature and emissivity index) with more metal-rich galaxies and investigate the detection of a potential submm excess. The data reduction method is adapted for each galaxy to derive the most reliable photometry from the final maps. PACS flux densities are compared with the MIPS 70 and 160 microns bands. We use colour-colour diagrams and modified blackbody fitting procedures to determine the dust properties of the DGS galaxies. We also include galaxies from the Herschel KINGFISH sample, containing more metal-rich environments, totalling 109 galaxies. The location of the DGS galaxies on Herschel colour-colour diagrams highlights the differences in global environments of low-metallicity galaxies. The dust in DGS galaxies is generally warmer than in KINGFISH galaxies (T_DGS~32 K, T_KINGFISH~23 K). The emissivity index, beta, is ~1.7 in the DGS, but metallicity does not make a strong effect on beta. The dust-to-stellar mass ratio is lower in low-metallicity galaxies: M_dust/M_star~0.02% for the DGS vs 0.1% for KINGFISH. Per unit dust mass, dwarf galaxies emit ~6 times more in the FIR than higher metallicity galaxies. Out of the 22 DGS galaxies detected at 500 micron, 41% present an excess in the submm not explained by our dust SED model. The excess mainly appears in lower metallicity galaxies (12+log(O/H) < 8.3), and the strongest excesses are detected in the most metal-poor galaxies. We stress the need for observations longwards of the Herschel wavelengths to detect any submm excess appearing beyond 500 micron.
We present a study of the infrared/submm emission of the LMC star forming complex N158-N159-N160. Combining observations from the Spitzer Space Telescope (3.6-70um), the Herschel Space Observatory (100-500um) and LABOCA (870um) allows us to work at t he best angular resolution available now for an extragalactic source. We observe a remarkably good correlation between SPIRE and LABOCA emission and resolve the low surface brightnesses emission. We use the Spitzer and Herschel data to perform a resolved Spectral Energy Distribution (SED) modelling of the complex. Using MBB, we derive a global emissivity index beta_c of 1.47. If beta cold is fixed to 1.5, we find an average temperature of 27K. We also apply the Galliano et al. (2011) modelling technique (and amorphous carbon to model carbon dust) to derive maps of the star formation rate, the mean starlight intensity, the fraction of PAHs or the dust mass surface density of the region. We observe that the PAH fraction strongly decreases in the HII regions. This decrease coincides with peaks in the mean radiation field intensity map. The dust surface densities follow the FIR distribution, with a total dust mass of 2.1x10^4 Msolar (2.8 times less than when using graphite grains) in the resolved elements we model. We find a non-negligible amount of dust in the molecular cloud N159 South (showing no massive SF). We also investigate the drivers of the Herschel/PACS and SPIRE submm colours as well as the variations in the gas-to-dust mass ratio (G/D) and the XCO conversion factor in the region N159. We finally model individual regions to analyse variations in the SED shape across the complex and the 870um emission in more details. No measurable submm excess emission at 870um seems to be detected in these regions.
Aims: In this paper, we perform detailed modelling of the Spitzer and Herschel observations of the LMC, in order to: (i) systematically study the uncertainties and biases affecting dust mass estimates; and to (ii) explore the peculiar ISM properties of the LMC. Methods: To achieve these goals, we have modelled the spatially resolved SEDs with two alternate grain compositions, to study the impact of different submillimetre opacities on the dust mass. We have rigorously propagated the observational errors (noise and calibration) through the entire fitting process, in order to derive consistent parameter uncertainties. Results: First, we show that using the integrated SED leads to underestimating the dust mass by ~50 % compared to the value obtained with sufficient spatial resolution, for the region we studied. This might be the case, in general, for unresolved galaxies. Second, we show that Milky Way type grains produce higher gas-to-dust mass ratios than what seems possible according to the element abundances in the LMC. A spatial analysis shows that this dilemma is the result of an exceptional property: the grains of the LMC have on average a larger intrinsic submm opacity (emissivity index beta~1.7 and opacity kappa_abs(160 microns)=1.6 m2/kg) than those of the Galaxy. By studying the spatial distribution of the gas-to-dust mass ratio, we are able to constrain the fraction of unseen gas mass between ~10, and ~100 % and show that it is not sufficient to explain the gas-to-dust mass ratio obtained with Milky Way type grains. Finally, we confirm the detection of a 500 microns extended emission excess with an average relative amplitude of ~15 %, varying up to 40 %. This excess anticorrelates well with the dust mass surface density. Although we do not know the origin of this excess, we show that it is unlikely the result of very cold dust, or CMB fluctuations.
During galaxy-galaxy interactions, massive gas clouds can be injected into the intergalactic medium which in turn become gravitationally bound, collapse and form stars, star clusters or even dwarf galaxies. The objects resulting from this process are both pristine, as they are forming their first generation of stars, and chemically evolved because the metallicity inherited from their parent galaxies is high. Such characteristics make them particularly interesting laboratories to study star formation. After having investigated their star-forming properties, we use photospheric, nebular and dust modeling to analyze here their spectral energy distribution (SED) from the far-ultraviolet to the mid-infrared regime for a sample of 7 star-forming regions. Our analysis confirms that the intergalactic star forming regions in Stephans Quintet, around Arp 105, and NGC 5291, appear devoid of stellar populations older than 10^9 years. We also find an excess of light in the near-infrared regime (from 2 to 4.5 microns) which cannot be attributed to stellar photospheric or nebular contributions. This excess is correlated with the star formation rate intensity suggesting that it is probably due to emission by very small grains fluctuating in temperature as well as the polycyclic aromatic hydrocarbons (PAH) line at 3.3 micron. Comparing the attenuation via the Balmer decrement to the mid-infrared emission allows us to check the reliability of the attenuation estimate. It suggests the presence of embedded star forming regions in NGC 5291 and NGC 7252. Overall the SED of star-forming regions in collision debris (and Tidal Dwarf Galaxies) resemble more that of dusty star-forming regions in galactic disks than to that of typical star-forming dwarf galaxies.
124 - M. Meixner , F. Galliano , S. Hony 2010
The HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) of the Magellanic Clouds will use dust emission to investigate the life cycle of matter in both the Large and Small Magellanic Clouds (LMC and SMC). Using the Herschel Space Observat orys PACS and SPIRE photometry cameras, we imaged a 2x8 square degree strip through the LMC, at a position angle of ~22.5 degrees as part of the science demonstration phase of the Herschel mission. We present the data in all 5 Herschel bands: PACS 100 and 160 {mu}m and SPIRE 250, 350 and 500 {mu}m. We present two dust models that both adequately fit the spectral energy distribution for the entire strip and both reveal that the SPIRE 500 {mu}m emission is in excess of the models by 6 to 17%. The SPIRE emission follows the distribution of the dust mass, which is derived from the model. The PAH-to-dust mass (f_PAH) image of the strip reveals a possible enhancement in the LMC bar in agreement with previous work. We compare the gas mass distribution derived from the HI 21 cm and CO J=1-0 line emission maps to the dust mass map from the models and derive gas-to-dust mass ratios (GDRs). The dust model, which uses the standard graphite and silicate optical properties for Galactic dust, has a very low GDR = 65(+15,-18) making it an unrealistic dust model for the LMC. Our second dust model, which uses amorphous carbon instead of graphite, has a flatter emissivity index in the submillimeter and results in a GDR = 287(+25,-42) that is more consistent with a GDR inferred from extinction.
The properties of the dust grains (e.g., temperature and mass) can be derived from fitting far-IR SEDs (>100 micron). Only with SPIRE on Herschel has it been possible to get high spatial resolution at 200 to 500 micron that is beyond the peak (~160 m icron) of dust emission in most galaxies. We investigate the differences in the fitted dust temperatures and masses determined using only <200 micron data and then also including >200 micron data (new SPIRE observations) to determine how important having >200 micron data is for deriving these dust properties. We fit the 100 to 350 micron observations of the Large Magellanic Cloud (LMC) point-by-point with a model that consists of a single temperature and fixed emissivity law. The data used are existing observations at 100 and 160 micron (from IRAS and Spitzer) and new SPIRE observations of 1/4 of the LMC observed for the HERITAGE Key Project as part of the Herschel Science Demonstration phase. The dust temperatures and masses computed using only 100 and 160 micron data can differ by up to 10% and 36%, respectively, from those that also include the SPIRE 250 & 350 micron data. We find that an emissivity law proportional to lambda^-1.5 minimizes the 100-350 micron fractional residuals. We find that the emission at 500 micron is ~10% higher than expected from extrapolating the fits made at shorter wavelengths. We find the fractional 500 micron excess is weakly anti-correlated with MIPS 24 micron flux and the total gas surface density. This argues against a flux calibration error as the origin of the 500 micron excess. Our results do not allow us to distinguish between a systematic variation in the wavelength dependent emissivity law or a population of very cold dust only detectable at lambda > 500 micron for the origin of the 500 micron excess.
We study the structure of the medium surrounding sites of high-mass star formation to determine the interrelation between the HII regions and the environment from which they were formed. The density distribution of the surroundings is key in determin ing how the radiation of the newly formed stars interacts with the surrounds in a way that allows it to be used as a star formation tracer. We present new Herschel/SPIRE 250, 350 and 500 mum data of LHA 120-N44 and LHA 120-N63 in the LMC. We construct average spectral energy distributions (SEDs) for annuli centered on the IR bright part of the star formation sites. The annuli cover ~10-~100 pc. We use a phenomenological dust model to fit these SEDs to derive the dust column densities, characterise the incident radiation field and the abundance of polycyclic aromatic hydrocarbon molecules. We see a factor 5 decrease in the radiation field energy density as a function of radial distance around N63. N44 does not show a systematic trend. We construct a simple geometrical model to derive the 3-D density profile of the surroundings of these two regions. Herschel/SPIRE data have proven very efficient in deriving the dust mass distribution. We find that the radiation field in the two sources behaves very differently. N63 is more or less spherically symmetric and the average radiation field drops with distance. N44 shows no systematic decrease of the radiation intensity which is probably due to the inhomogeneity of the surrounding molecular material and to the complex distribution of several star forming clusters in the region.
We present the first Herschel PACS and SPIRE images of the low-metallicity galaxy NGC6822 observed from 70 to 500 mu and clearly resolve the HII regions with PACS and SPIRE. We find that the ratio 250/500 is dependent on the 24 mu surface brightness in NGC6822, which would locally link the heating processes of the coldest phases of dust in the ISM to the star formation activity. We model the SEDs of some regions HII regions and less active regions across the galaxy and find that the SEDs of HII regions show warmer ranges of dust temperatures. We derive very high dust masses when graphite is used in our model to describe carbon dust. Using amorphous carbon, instead, requires less dust mass to account for submm emission due to its lower emissivity properties. This indicates that SED models including Herschel constraints may require different dust properties than commonly used.
34 - F. Galliano 2008
In the present contribution, I summarize a systematic study of ISO and Spitzer mid-IR spectra of Galactic regions and star forming galaxies. This study quantifies the relative variations of the main aromatic features inside spatially resolved objects as well as among the integrated spectra of 50 objects. Our analysis implies that the properties of the PAHs are remarkably universal throughout our sample and at different spatial scales. In addition, the relative variations of the band ratios, as large as one order of magnitude, are mainly controled by the fraction of ionized PAHs. In particular, I show that we can rule out both the modification of the PAH size distribution and the mid-IR extinction, as an explanation of these variations. High values of the I(6.2)/I(11.3) ratio are found to be associated with the far-UV illuminated surface of PDRs, at the scale of an interstellar cloud, and associated with star formation activity, at the scale of a galaxy. Using a few well-studied Galactic regions, we provide an empirical relation between the I(6.2)/I(11.3) ratio and the ionization/recombination ratio G0/ne. Finally, I show that these trends are consistent with the detailed modeling of the PAH emission within photodissociation regions, taking into account the radiative transfer, the stochastic heating and the charge exchange between gas and dust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا