ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply tran sitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.
In this work, we review the results of Refs [1]-[5] dedicated to the description of the early Universe cosmology induced by quantum and thermal effects in superstring theories. The present evolution of the Universe is described very accurately by the standard Lambda-CDM scenario, while very little is known about the early cosmological eras. String theory provides a consistent microscopic theory to account for such missing epochs. In our framework, the Universe is a torus filled with a gas of superstrings. We first show how to describe the thermodynamical properties of this system, namely energy density and pressure, by introducing temperature and supersymmetry breaking effects at a fundamental level by appropriate boundary conditions. We focus on the intermediate period of the history: After the very early Hagedorn era and before the late electroweak phase transition. We determine the back-reaction of the gas of strings on the initially static space-time, which then yields the induced cosmology. The consistency of our approach is guaranteed by checking the quasi-staticness of the evolution. It turns out that for arbitrary initial boundary conditions at the exit of the Hagedorn era, the quasi-static evolutions are universally attracted to radiation-dominated solutions. It is shown that at these attractor points, the temperature, the inverse scale factor of the Universe and the supersymmetry breaking scale evolve proportionally. There are two important effects which result from the underlying string description. First, initially small internal dimensions can be spontaneously decompactified during the attraction to a radiation dominated Universe. Second, the radii of internal dimensions can be stabilized.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا