ﻻ يوجد ملخص باللغة العربية
In this work, we review the results of Refs [1]-[5] dedicated to the description of the early Universe cosmology induced by quantum and thermal effects in superstring theories. The present evolution of the Universe is described very accurately by the standard Lambda-CDM scenario, while very little is known about the early cosmological eras. String theory provides a consistent microscopic theory to account for such missing epochs. In our framework, the Universe is a torus filled with a gas of superstrings. We first show how to describe the thermodynamical properties of this system, namely energy density and pressure, by introducing temperature and supersymmetry breaking effects at a fundamental level by appropriate boundary conditions. We focus on the intermediate period of the history: After the very early Hagedorn era and before the late electroweak phase transition. We determine the back-reaction of the gas of strings on the initially static space-time, which then yields the induced cosmology. The consistency of our approach is guaranteed by checking the quasi-staticness of the evolution. It turns out that for arbitrary initial boundary conditions at the exit of the Hagedorn era, the quasi-static evolutions are universally attracted to radiation-dominated solutions. It is shown that at these attractor points, the temperature, the inverse scale factor of the Universe and the supersymmetry breaking scale evolve proportionally. There are two important effects which result from the underlying string description. First, initially small internal dimensions can be spontaneously decompactified during the attraction to a radiation dominated Universe. Second, the radii of internal dimensions can be stabilized.
I review the Trans-Planckian Censorship Conjecture (TCC) and its implications for cosmology, in particular for the inflationary universe scenario. Whereas the inflationary scenario is tightly constrained by the TCC, alternative early universe scenarios are not restricted.
We calculate the chiral string amplitude in pure spinor formalism and take four point amplitude as an example. The method could be easily generalized to $N$ point amplitude by complicated calculations. By doing the usual calculations of string theory
We consider the world surface in AdS_5 that ends on two intersecting null lines at the boundary. The corresponding string partition function describes the expectation value of the Wilson line with a null cusp in dual large N maximally supersymmetric
We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain
Inspired by superstring field theory, we study differential, integral, and inverse forms and their mutual relations on a supermanifold from a sheaf-theoretical point of view. In particular, the formal distributional properties of integral forms are r