ترغب بنشر مسار تعليمي؟ اضغط هنا

260 - X. Plat , F. Alet , S. Capponi 2015
We investigate the properties in finite magnetic field of an extended anisotropic XXZ spin-1/2 model on the Kagome lattice, originally introduced by Balents, Fisher, and Girvin [Phys. Rev. B, 65, 224412 (2002)]. The magnetization curve displays plate aus at magnetization m=1/6 and 1/3 when the anisotropy is large. Using low-energy effective constrained models (quantum loop and quantum dimer models), we discuss the nature of the plateau phases, found to be crystals that break discrete rotation and/or translation symmetries. Large-scale quantum Monte-Carlo simulations were carried out in particular for the m=1/6 plateau. We first map out the phase diagram of the effective quantum loop model with an additional loop-loop interaction to find stripe order around the point relevant for the original model as well as a topological Z2 spin liquid. The existence of a stripe crystalline phase is further evidenced by measuring both standard structure factor and entanglement entropy of the original microscopic model.
154 - F. Alet , S. Capponi , H. Nonne 2010
The zero-temperature properties of the SO(5) bilinear-biquadratic Heisenberg spin chain are investigated by means of a low-energy approach and large scale numerical calculations. In sharp contrast to the spin-1 SO(3) Heisenberg chain, we show that th e SO(5) Heisenberg spin chain is dimerized with a two-fold degenerate ground state. On top of this gapful phase, we find the emergence of a non-degenerate gapped phase with hidden (Z$_2$ $times$ Z$_2$)$^2$ symmetry and spin-3/2 edge states that can be understood from a SO(5) AKLT wave function. We derive a low-energy theory describing the quantum critical point which separates these two gapped phases. It is shown and confirmed numerically that this quantum critical point belongs to the SO(5)$_1$ universality class.
We present release 1.3 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice model s such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). Changes in the new release include a DMRG program for interacting models, support for translation symmetries in the diagonalization programs, the ability to define custom measurement operators, and support for inhomogeneous systems, such as lattice models with traps. The software is available from our web server at http://alps.comp-phys.org/ .
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا