ترغب بنشر مسار تعليمي؟ اضغط هنا

The ALPS project release 1.3: open source software for strongly correlated systems

192   0   0.0 ( 0 )
 نشر من قبل Matthias Troyer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present release 1.3 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). Changes in the new release include a DMRG program for interacting models, support for translation symmetries in the diagonalization programs, the ability to define custom measurement operators, and support for inhomogeneous systems, such as lattice models with traps. The software is available from our web server at http://alps.comp-phys.org/ .



قيم البحث

اقرأ أيضاً

We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quan tum magnets, lattice bosons, and strongly correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, common evaluation and plotting tools, and simulation programs. The programs enable non-experts to start carrying out serial or parallel numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), the density matrix renormalization group (DMRG) both in a static version and a dynamic time-evolving block decimation (TEBD) code, and quantum Monte Carlo solvers for dynamical mean field theory (DMFT). The ALPS libraries provide a powerful framework for programers to develop their own applications, which, for instance, greatly simplify the steps of porting a serial code onto a parallel, distributed memory machine. Major changes in release 2.0 include the use of HDF5 for binary data, evaluation tools in Python, support for the Windows operating system, the use of CMake as build system and binary installation packages for Mac OS X and Windows, and integration with the VisTrails workflow provenance tool. The software is available from our web server at http://alps.comp-phys.org/.
69 - F. Alet , P. Dayal , A. Grzesik 2004
We present the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quant um magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). The software is available from our web server at http://alps.comp-phys.org.
A powerful perspective in understanding non-equilibrium quantum dynamics is through the time evolution of its entanglement content. Yet apart from a few guiding principles for the entanglement entropy, to date, not much else is known about the refine d characters of entanglement propagation. Here, we unveil signatures of the entanglement evolving and information propagation out-of-equilibrium, from the view of entanglement Hamiltonian. As a prototypical example, we study quantum quench dynamics of a one-dimensional Bose-Hubbard model by means of time-dependent density-matrix renormalization group simulation. Before reaching equilibration, it is found that a current operator emerges in entanglement Hamiltonian, implying that entanglement spreading is carried by particle flow. In the long-time limit subsystem enters a steady phase, evidenced by the dynamic convergence of the entanglement Hamiltonian to the expectation of a thermal ensemble. Importantly, entanglement temperature of steady state is spatially independent, which provides an intuitive trait of equilibrium. We demonstrate that these features are consistent with predictions from conformal field theory. These findings not only provide crucial information on how equilibrium statistical mechanics emerges in many-body dynamics, but also add a tool to exploring quantum dynamics from perspective of entanglement Hamiltonian.
We present recent advances in understanding of the ground and excited states of the electron-phonon coupled systems obtained by novel methods of Diagrammatic Monte Carlo and Stochastic Optimization, which enable the approximation-free calculation of Matsubara Green function in imaginary times and perform unbiased analytic continuation to real frequencies. We present exact numeric results on the ground state properties, Lehmann spectral function and optical conductivity of different strongly correlated systems: Frohlich polaron, Rashba-Pekar exciton-polaron, pseudo Jahn-Teller polaron, exciton, and interacting with phonons hole in the t-J model.
The density-matrix renormalization group method has become a standard computational approach to the low-energy physics as well as dynamics of low-dimensional quantum systems. In this paper, we present a new set of applications, available as part of t he ALPS package, that provide an efficient and flexible implementation of these methods based on a matrix-product state (MPS) representation. Our applications implement, within the same framework, algorithms to variationally find the ground state and low-lying excited states as well as simulate the time evolution of arbitrary one-dimensional and two-dimensional models. Implementing the conservation of quantum numbers for generic Abelian symmetries, we achieve performance competitive with the best codes in the community. Example results are provided for (i) a model of itinerant fermions in one dimension and (ii) a model of quantum magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا