ترغب بنشر مسار تعليمي؟ اضغط هنا

52 - F. Canfora 2008
It is shown that in all odd dimensional Chern-Simons theories states in which the torsion is non zero (but it can approach smoothly to zero outside suitable regions) do exist. Some possible observational effects related to neutrino oscillations are p ointed out. In the theory of continuum media (in which suitable defects can be described by localized non vanishing torsion) the gravitational intuition is a rather useful tool to describe the physical effects of such defects. A possible astrophysical application is shortly described.
In this paper a neutron star with an inner core which undergoes a phase transition, which is characterized by conformal degrees of freedom on the phase boundary, is considered. Typical cases of such a phase transition are e.g. quantum Hall effect, su perconductivity and superfluidity. Assuming the mechanical stability of this system the effects induced by the conformal degrees of freedom on the phase boundary will be analyzed. We will see that the inclusion of conformal degrees of freedom is not always consistent with the staticity of the phase boundary. Indeed also in the case of mechanical equilibrium there may be the tendency of one phase to swallow the other. Such a shift of the phase boundary would not imply any compression or decompression of the core. By solving the Israel junction conditions for the conformal matter, we have found the range of physical parameters which can guarantee a stable equilibrium of the phase boundary of the neutron star. The relevant parameters turn out to be not only the density difference but also the difference of the slope of the density profiles of the two phases. The values of the parameters which guarantee the stability turn out to be in a phenomenologically reasonable range. For the parameter values where the the phase boundary tends to move, a possible astrophysical consequence related to sudden small changes of the moment of inertia of the star is briefly discussed.
Exact solutions with torsion in Einstein-Gauss-Bonnet gravity are derived. These solutions have a cross product structure of two constant curvature manifolds. The equations of motion give a relation for the coupling constants of the theory in order t o have solutions with nontrivial torsion. This relation is not the Chern-Simons combination. One of the solutions has a $AdS_2times S^3$ structure and is so the purely gravitational analogue of the Bertotti-Robinson space-time where the torsion can be seen as the dual of the covariantly constant electromagnetic field.
An interesting connection between the Regge theory of scattering, the Veneziano amplitude, the Lee-Yang theorems in statistical mechanics and nonextensive Renyi entropy is addressed. In this scheme the standard entropy and the Renyi entropy appear to be different limits of a unique mathematical object. This framework sheds light on the physical origin of nonextensivity. A non trivial application to spin glass theory is shortly outlined.
Exact solutions of Einstein field equations invariant for a non-Abelian 2-dimensional Lie algebra of Killing fields are described. Physical properties of these gravitational fields are studied, their wave character is checked by making use of covaria nt criteria and the observable effects of such waves are outlined. The possibility of detection of these waves with modern detectors, spherical resonant antennas in particular, is sketched.
108 - F. Canfora , G. Vilasi 2005
A scenario is proposed in which the matter-antimatter asymmetry behaves like a seed for the inflationary phase of the universe. The mechanism which makes this scenario plausible is the holographic principle: this scheme is supported by a good predict ion of the number of e-folds. It seems that such a mechanism can only work in the presence of a Hagedorn-like phase transition. The issue of the graceful exit can also be naturally accounted for.
111 - F. Canfora , G. Vilasi 2005
It is likely that the holographic principle will be a consequence of the would be theory of quantum gravity. Thus, it is interesting to try to go in the opposite direction: can the holographic principle fix the gravitational interaction? It is shown that the classical gravitational interaction is well inside the set of potentials allowed by the holographic principle. Computations clarify which role such a principle could have in lowering the value of the cosmological constant computed in QFT to the observed one.
57 - F. Canfora , G. Vilasi 2005
The matching between two 4-dimensional PP-waves is discussed by using Israels matching conditions. Physical consequences on the dynamics of (cosmic) strings are analyzed. The extension to space-time of arbitrary dimension is discussed and some intere sting features related to the brane world scenario, BPS states in gravity and Dirac-like quantization conditions are briefly described.
122 - F. Canfora , G. Vilasi 2003
A model is proposed to describe a transition from a Schwarzschild black hole of mass $M_{0}$ to a Schwarzschild black hole of mass $M_{1}$ $leq M_{0}$. The basic equations are derived from the non-vacuum Einstein field equations taking a source repre senting a null scalar field with a nonvanishing trace anomaly. It is shown that the nonvanishing trace anomaly of the scalar field prevents a complete evaporation.
65 - F. Canfora , G. Vilasi 2003
Non-vacuum exact gravitational waves invariant for a non Abelian two-dimensional Lie algebra generated by two Killing fields whose commutator is of light type, are described. The polarization of these waves, already known from previous works, is rela ted to the sources. Non vacuum exact gravitational waves admitting only one Killing field of light type are also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا