ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the stability of spatially periodic, nonlinear Vlasov-Poisson equilibria as an eigenproblem in a Fourier-Hermite basis (in the space and velocity variables, respectively) of finite dimension, $N$. When the advection term in Vlasov equation i s dominant, the convergence with $N$ of the eigenvalues is rather slow, limiting the applicability of the method. We use the method of spectral deformation introduced in [J. D. Crawford and P. D. Hislop, Ann. Phys. 189, 265 (1989)] to selectively damp the continuum of neutral modes associated with the advection term, thus accelerating convergence. We validate and benchmark the performance of our method by reproducing the kinetic dispersion relation results for linear (spatially homogeneous) equilibria. Finally, we study the stability of a periodic Bernstein-Greene-Kruskal mode with multiple phase space vortices, compare our results with numerical simulations of the Vlasov-Poisson system and show that the initial unstable equilibrium may evolve to different asymptotic states depending on the way it was perturbed.
We present two continuous symmetry reduction methods for reducing high-dimensional dissipative flows to local return maps. In the Hilbert polynomial basis approach, the equivariant dynamics is rewritten in terms of invariant coordinates. In the metho d of moving frames (or method of slices) the state space is sliced locally in such a way that each group orbit of symmetry-equivalent points is represented by a single point. In either approach, numerical computations can be performed in the original state-space representation, and the solutions are then projected onto the symmetry-reduced state space. The two methods are illustrated by reduction of the complex Lorenz system, a 5-dimensional dissipative flow with rotational symmetry. While the Hilbert polynomial basis approach appears unfeasible for high-dimensional flows, symmetry reduction by the method of moving frames offers hope.
The continuous and discrete symmetries of the Kuramoto-Sivashinsky system restricted to a spatially periodic domain play a prominent role in shaping the invariant sets of its chaotic dynamics. The continuous spatial translation symmetry leads to rela tive equilibrium (traveling wave) and relative periodic orbit (modulated traveling wave) solutions. The discrete symmetries lead to existence of equilibrium and periodic orbit solutions, induce decomposition of state space into invariant subspaces, and enforce certain structurally stable heteroclinic connections between equilibria. We show, on the example of a particular small-cell Kuramoto-Sivashinsky system, how the geometry of its dynamical state space is organized by a rigid `cage built by heteroclinic connections between equilibria, and demonstrate the preponderance of unstable relative periodic orbits and their likely role as the skeleton underpinning spatiotemporal turbulence in systems with continuous symmetries. We also offer novel visualizations of the high-dimensional Kuramoto-Sivashinsky state space flow through projections onto low-dimensional, PDE representation independent, dynamically invariant intrinsic coordinate frames, as well as in terms of the physical, symmetry invariant energy transfer rates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا