ﻻ يوجد ملخص باللغة العربية
We study the stability of spatially periodic, nonlinear Vlasov-Poisson equilibria as an eigenproblem in a Fourier-Hermite basis (in the space and velocity variables, respectively) of finite dimension, $N$. When the advection term in Vlasov equation is dominant, the convergence with $N$ of the eigenvalues is rather slow, limiting the applicability of the method. We use the method of spectral deformation introduced in [J. D. Crawford and P. D. Hislop, Ann. Phys. 189, 265 (1989)] to selectively damp the continuum of neutral modes associated with the advection term, thus accelerating convergence. We validate and benchmark the performance of our method by reproducing the kinetic dispersion relation results for linear (spatially homogeneous) equilibria. Finally, we study the stability of a periodic Bernstein-Greene-Kruskal mode with multiple phase space vortices, compare our results with numerical simulations of the Vlasov-Poisson system and show that the initial unstable equilibrium may evolve to different asymptotic states depending on the way it was perturbed.
We study Landau damping in the 1+1D Vlasov-Poisson system using a Fourier-Hermite spectral representation. We describe the propagation of free energy in phase space using forwards and backwards propagating Hermite modes recently developed for gyrokin
Turbulence at kinetic scales is an unresolved and ubiquitous phenomenon that characterizes both space and laboratory plasmas. Recently, new theories, {it in-situ} spacecraft observations and numerical simulations suggest a novel scenario for turbulen
We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations [Zocco & Schekochihin, Phys. Plasmas 18, 102309
We develop a general stability theory for equilibrium points of Poisson dynamical systems and relative equilibria of Hamiltonian systems with symmetries, including several generalisations of the Energy-Casimir and Energy-Momentum methods. Using a top
The NASA Magnetospheric Multiscale mission has made in situ diffusion region and kinetic-scale resolution measurements of asymmetric magnetic reconnection for the first time, in the Earths magnetopause. The principal theoretical tool currently used t