ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Keck/DEIMOS spectroscopy of stars in the recently discovered Milky Way satellites Hydra II, Pisces II, and Laevens 1. We measured a velocity dispersion of 5.4 (+3.6 -2.4) km/s for Pisces II, but we did not resolve the velocity dispersions of Hydra II or Laevens 1. We marginally resolved the metallicity dispersions of Hydra II and Pisces II but not Laevens 1. Furthermore, Hydra II and Pisces II obey the luminosity-metallicity relation for Milky Way dwarf galaxies (<[Fe/H]> = -2.02 +/- 0.08 and -2.45 +/- 0.07, respectively), whereas Laevens 1 does not (<[Fe/H]> = -1.68 +/- 0.05). The kinematic and chemical properties suggest that Hydra II and Pisces II are dwarf galaxies, and Laevens 1 is a globular cluster. We determined that two of the previously observed blue stars near the center of Laevens 1 are not members of the cluster. A third blue star has ambiguous membership. Hydra II has a radial velocity <v_helio> = 303.1 +/- 1.4 km/s, similar to the leading arm of the Magellanic stream. The mass-to-light ratio for Pisces II is 370 (+310 -240) M_sun/L_sun. It is not among the most dark matter-dominated dwarf galaxies, but it is still worthy of inclusion in the search for gamma rays from dark matter self-annihilation.
142 - Evan N. Kirby 2015
We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs S culptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in three dSphs. However, our selection biases preclude a detailed comparison to the carbon-enhanced fraction of the Milky Way stellar halo. Nonetheless, the stars with [C/Fe] < +1 in dSphs follow a different [C/Fe] track with [Fe/H] than the halo stars. Specifically, [C/Fe] in dSphs begins to decline at lower [Fe/H] than in the halo. The difference in the metallicity of the [C/Fe] knee adds to the evidence from [alpha/Fe] distributions that the progenitors of the halo had a shorter timescale for chemical enrichment than the surviving dSphs.
45 - Evan N. Kirby 2013
Segue 2, discovered by Belokurov et al. (2009), is a galaxy with a luminosity of only 900 L_sun. We present Keck/DEIMOS spectroscopy of 25 members of Segue 2--a threefold increase in spectroscopic sample size. The velocity dispersion is too small to be measured with our data. The upper limit with 90% (95%) confidence is sigma_v < 2.2 (2.6) km/s, the most stringent limit for any galaxy. The corresponding limit on the mass within the 3-D half-light radius (46 pc) is M_1/2 < 1.5 (2.1) x 10^5 M_sun. Segue 2 is the least massive galaxy known. We identify Segue 2 as a galaxy rather than a star cluster based the wide dispersion in [Fe/H] (from -2.85 to -1.33) among the member stars. The stars [alpha/Fe] ratios decline with increasing [Fe/H], indicating that Segue 2 retained Type Ia supernova ejecta despite its presently small mass and that star formation lasted for at least 100 Myr. The mean metallicity, <[Fe/H]> = -2.22 +/- 0.13 (about the same as the Ursa Minor galaxy, 330 times more luminous than Segue 2), is higher than expected from the luminosity-metallicity relation defined by more luminous dwarf galaxy satellites of the Milky Way. Segue 2 may be the barest remnant of a tidally stripped, Ursa Minor-sized galaxy. If so, it is the best example of an ultra-faint dwarf galaxy that came to be ultra-faint through tidal stripping. Alternatively, Segue 2 could have been born in a very low-mass dark matter subhalo (v_max < 10 km/s), below the atomic hydrogen cooling limit.
121 - Luis C. Vargas 2013
The Milky Way ultra-faint dwarf galaxies (UFDs) contain some of the oldest, most metal-poor stars in the Universe. We present [Mg/Fe], [Si/Fe], [Ca/Fe], [Ti/Fe], and mean [alpha/Fe], abundance ratios for 61 individual red giant branch stars across 8 UFDs. This is the largest sample of alpha abundances published to date in galaxies with absolute magnitudes M_V > -8, including the first measurements for Segue 1, Canes Venatici II, Ursa Major I, and Leo T. Abundances were determined via medium-resolution Keck/DEIMOS spectroscopy and spectral synthesis. The sample spans the metallicity range -3.4 < [Fe/H] < -1.1. With the possible exception of Segue 1 and Ursa Major II, the individual UFDs show on average lower [alpha/Fe] at higher metallicities, consistent with enrichment from Type Ia supernovae. Thus even the faintest galaxies have undergone at least a limited level of chemical self-enrichment. Together with recent photometric studies, this suggests that star formation in the UFDs was not a single burst, but instead lasted at least as much as the minimum time delay of the onset of Type Ia supernovae (~100 Myr) and less than ~2 Gyr. We further show that the combined population of UFDs has an [alpha/Fe] abundance pattern that is inconsistent with a flat, Galactic halo-like alpha abundance trend, and is also qualitatively different from that of the more luminous CVn I dSph, which does show a hint of a plateau at very low [Fe/H].
70 - Evan N. Kirby 2010
We derive the star formation histories of eight dwarf spheroidal (dSph) Milky Way satellite galaxies from their alpha element abundance patterns. Nearly 3000 stars from our previously published catalog (Paper II) comprise our data set. The average [a lpha/Fe] ratios for all dSphs follow roughly the same path with increasing [Fe/H]. We do not observe the predicted knees in the [alpha/Fe] vs. [Fe/H] diagram, corresponding to the metallicity at which Type Ia supernovae begin to explode. Instead, we find that Type Ia supernova ejecta contribute to the abundances of all but the most metal-poor ([Fe/H] < -2.5) stars. We have also developed a chemical evolution model that tracks the star formation rate, Types II and Ia supernova explosions, and supernova feedback. Without metal enhancement in the supernova blowout, massive amounts of gas loss define the history of all dSphs except Fornax, the most luminous in our sample. All six of the best-fit model parameters correlate with dSph luminosity but not with velocity dispersion, half-light radius, or Galactocentric distance.
520 - Evan N. Kirby 2010
We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 red giant stars that are likely members of eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters. We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing our medium-resolution spectroscopic measurements to high-resolution spectroscopic abundances of the same stars. For this purpose, our DEIMOS sample included 132 red giants with published high-resolution spectroscopy in globular clusters, the MW halo field, and dwarf galaxies. The standard deviations of the differences in [Fe/H] and [alpha/Fe] (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.
112 - Evan N. Kirby 2009
We present measurements of Fe, Mg, Si, Ca, and Ti abundances for 388 radial velocity member stars in the Sculptor dwarf spheroidal galaxy (dSph), a satellite of the Milky Way. This is the largest sample of individual alpha element (Mg, Si, Ca, Ti) ab undance measurements in any single dSph. The measurements are made from Keck/DEIMOS medium-resolution spectra (6400-9000 A, R ~ 6500). Based on comparisons to published high-resolution (R >~ 20000) spectroscopic measurements, our measurements have uncertainties of sigma([Fe/H]) = 0.14 and sigma([alpha/Fe]) = 0.13. The Sculptor [Fe/H] distribution has a mean <[Fe/H]> = -1.58 and is asymmetric with a long, metal-poor tail, indicative of a history of extended star formation. Sculptor has a larger fraction of stars with [Fe/H] < -2 than the Milky Way halo. We have discovered one star with [Fe/H] = -3.80 +/- 0.28, which is the most metal-poor star known anywhere except the Milky Way halo, but high-resolution spectroscopy is needed to measure this stars detailed abundances. As has been previously reported based on high-resolution spectroscopy, [alpha/Fe] in Sculptor falls as [Fe/H] increases. The metal-rich stars ([Fe/H] ~ -1.5) have lower [alpha/Fe] than Galactic halo field stars of comparable metallicity. This indicates that star formation proceeded more gradually in Sculptor than in the Galactic halo. We also observe radial abundance gradients of -0.030 +/- 0.003 dex per arcmin in [Fe/H] and +0.013 +/- 0.003 dex per arcmin in [alpha/Fe] out to 11 arcmin (275 pc). Together, these measurements cast Sculptor and possibly other surviving dSphs as representative of the dwarf galaxies from which the metal-poor tail of the Galactic halo formed.
86 - Evan N. Kirby 2009
The hierarchical theory of galaxy formation rests on the idea that smaller galactic structures merge to form the galaxies that we see today. The past decade has provided remarkable observational support for this scenario, driven in part by advances i n spectroscopic instrumentation. Multi-object spectroscopy enabled the discovery of kinematically cold substructures around the Milky Way and M31 that are likely the debris of disrupting satellites. Improvements in high-resolution spectroscopy have produced key evidence that the abundance patterns of the Milky Way halo and its dwarf satellites can be explained by Galactic chemical evolution models based on hierarchical assembly. These breakthroughs have depended almost entirely on observations of nearby stars in the Milky Way and luminous red giant stars in M31 and Local Group dwarf satellites. In the next decade, extremely large telescopes will allow observations far down the luminosity function in the known dwarf galaxies, and they will enable observations of individual stars far out in the Galactic halo. The chemical abundance census now available for the Milky Way will become possible for our nearest neighbor, M31. Velocity dispersion measurements now available in M31 will become possible for systems beyond the Local Group such as Sculptor and M81 Group galaxies. Detailed studies of a greater number of individual stars in a greater number of spiral galaxies and their satellites will test hierarchical assembly in new ways because dynamical and chemical evolution models predict different outcomes for halos of different masses in different environments.
61 - Evan N. Kirby 2008
We present new metallicity measurements for 298 individual red giant branch stars in eight of the least luminous dwarf spheroidal galaxies (dSphs) in the Milky Way (MW) system. Our technique is based on medium resolution Keck/DEIMOS spectroscopy coup led with spectral synthesis. We present the first spectroscopic metallicities at [Fe/H] < -3.0 of stars in a dwarf galaxy, with individual stellar metallicities as low as [Fe/H] = -3.3. Because our [Fe/H] measurements are not tied to empirical metallicity calibrators and are sensitive to arbitrarily low metallicities, we are able to probe this extremely metal-poor regime accurately. The metallicity distribution of stars in these dSphs is similar to the MW halo at the metal-poor end. We also demonstrate that the luminosity-metallicity relation previously seen in more luminous dSph galaxies (M_V = -13.4 to -8.8) extends smoothly down to an absolute magnitude of M_V = -3.7. The discovery of extremely metal-poor stars in dSphs lends support to the LCDM galaxy assembly paradigm wherein dwarf galaxies dissolve to form the stellar halo of the MW.
We present a technique that applies spectral synthesis to medium resolution spectroscopy (MRS, R ~ 6000) in the red (6300 A < lambda < 9100 A) to measure [Fe/H] and [alpha/Fe] of individual red giant stars over a wide metallicity range. We apply our technique to 264 red giant stars in seven Galactic globular clusters and demonstrate that it reproduces the metallicities and alpha enhancements derived from high resolution spectroscopy (HRS). The MRS technique excludes the three Ca II triplet lines and instead relies on a plethora of weaker lines. Unlike empirical metallicity estimators, such as the equivalent width of the Ca II triplet, the synthetic method presented here is applicable over an arbitrarily wide metallicity range and is independent of assumptions about the alpha enhancement. Estimates of cluster mean [Fe/H] from different HRS studies show typical scatter of ~0.1 dex but can be larger than 0.2 dex for metal-rich clusters. The scatter in HRS abundance estimates among individual stars in a given cluster is also comparable to 0.1 dex. By comparison, the scatter among MRS [Fe/H] estimates of individual stars in a given cluster is ~0.1 dex for most clusters but 0.17 dex for the most metal-rich cluster, M71 (<[Fe/H]> = -0.8). A star-by-star comparison of HRS vs. MRS [alpha/Fe] estimates indicates that the precision in [alpha/Fe]_MRS is 0.05 dex. The errors in [Fe/H]_MRS and [alpha/Fe]_MRS increase beyond 0.25 dex only below signal-to-noise ratios of 20 A^(-1), which is typical for existing MRS of the red giant stars in Leo I, one of the most distant Milky Way satellites (250 kpc).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا