ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamow-Teller (GT) strength distributions of Mg isotopes are investigated within a framework of the deformed quasi-particle random phase approximation(DQRPA). We found that the N=20 shell closure in $^{28 sim 34}$Mg was broken by the prolate shape def ormation originating from the {it fp}-intruder states. The shell closure breaking gives rise to a shift of low-lying GT excited states into high-lying states. Discussions regarding the shell evolution trend of single particle states around N=20 nuclei are also presented with the comparison to other approaches.
We developed the quasi-particle random phase approximation (QRPA) for the neutrino scattering off even-even nuclei via neutral current (NC) and charged cur- rent (CC). The QRPA has been successfully applied for the beta and betabeta decay of relevant nuclei. To describe neutrino scattering, general multipole transitions by weak interactions with a finite momentum transfer are calculated for NC and CC reaction with detailed formalism. Since we consider neutron-proton (np) pairing as well as neutron-neutron (nn) and proton-proton (pp) pairing correlations, the nn + pp QRPA and np QRPA are combined in a framework, which enables to describe both NC and CC reactions in a consistent way. Numerical results for u-^{12}C, -^{56}Fe and -^{56}Ni reactions are shown to comply with other theoretical calculations and reproduce well available experimental data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا