ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate using reinforcement learning agents as generative models of images (extending arXiv:1804.01118). A generative agent controls a simulated painting environment, and is trained with rewards provided by a discriminator network simultaneous ly trained to assess the realism of the agents samples, either unconditional or reconstructions. Compared to prior work, we make a number of improvements to the architectures of the agents and discriminators that lead to intriguing and at times surprising results. We find that when sufficiently constrained, generative agents can learn to produce images with a degree of visual abstraction, despite having only ever seen real photographs (no human brush strokes). And given enough time with the painting environment, they can produce images with considerable realism. These results show that, under the right circumstances, some aspects of human drawing can emerge from simulated embodiment, without the need for external supervision, imitation or social cues. Finally, we note the frameworks potential for use in creative applications.
We propose meta-curvature (MC), a framework to learn curvature information for better generalization and fast model adaptation. MC expands on the model-agnostic meta-learner (MAML) by learning to transform the gradients in the inner optimization such that the transformed gradients achieve better generalization performance to a new task. For training large scale neural networks, we decompose the curvature matrix into smaller matrices in a novel scheme where we capture the dependencies of the models parameters with a series of tensor products. We demonstrate the effects of our proposed method on several few-shot learning tasks and datasets. Without any task specific techniques and architectures, the proposed method achieves substantial improvement upon previous MAML variants and outperforms the recent state-of-the-art methods. Furthermore, we observe faster convergence rates of the meta-training process. Finally, we present an analysis that explains better generalization performance with the meta-trained curvature.
This paper improves state-of-the-art visual object trackers that use online adaptation. Our core contribution is an offline meta-learning-based method to adjust the initial deep networks used in online adaptation-based tracking. The meta learning is driven by the goal of deep networks that can quickly be adapted to robustly model a particular target in future frames. Ideally the resulting models focus on features that are useful for future frames, and avoid overfitting to background clutter, small parts of the target, or noise. By enforcing a small number of update iterations during meta-learning, the resulting networks train significantly faster. We demonstrate this approach on top of the high performance tracking approaches: tracking-by-detection based MDNet and the correlation based CREST. Experimental results on standard benchmarks, OTB2015 and VOT2016, show that our meta-learn
We present a transformation-grounded image generation network for novel 3D view synthesis from a single image. Instead of taking a blank slate approach, we first explicitly infer the parts of the geometry visible both in the input and novel views and then re-cast the remaining synthesis problem as image completion. Specifically, we both predict a flow to move the pixels from the input to the novel view along with a novel visibility map that helps deal with occulsion/disocculsion. Next, conditioned on those intermediate results, we hallucinate (infer) parts of the object invisible in the input image. In addition to the new network structure, training with a combination of adversarial and perceptual loss results in a reduction in common artifacts of novel view synthesis such as distortions and holes, while successfully generating high frequency details and preserving visual aspects of the input image. We evaluate our approach on a wide range of synthetic and real examples. Both qualitative and quantitative results show our method achieves significantly better results compared to existing methods.
We present a new public dataset with a focus on simulating robotic vision tasks in everyday indoor environments using real imagery. The dataset includes 20,000+ RGB-D images and 50,000+ 2D bounding boxes of object instances densely captured in 9 uniq ue scenes. We train a fast object category detector for instance detection on our data. Using the dataset we show that, although increasingly accurate and fast, the state of the art for object detection is still severely impacted by object scale, occlusion, and viewing direction all of which matter for robotics applications. We next validate the dataset for simulating active vision, and use the dataset to develop and evaluate a deep-network-based system for next best move prediction for object classification using reinforcement learning. Our dataset is available for download at cs.unc.edu/~ammirato/active_vision_dataset_website/.
Although deep convolutional neural networks(CNNs) have achieved remarkable results on object detection and segmentation, pre- and post-processing steps such as region proposals and non-maximum suppression(NMS), have been required. These steps result in high computational complexity and sensitivity to hyperparameters, e.g. thresholds for NMS. In this work, we propose a novel end-to-end trainable deep neural network architecture, which consists of convolutional and recurrent layers, that generates the correct number of object instances and their bounding boxes (or segmentation masks) given an image, using only a single network evaluation without any pre- or post-processing steps. We have tested on detecting digits in multi-digit images synthesized using MNIST, automatically segmenting digits in these images, and detecting cars in the KITTI benchmark dataset. The proposed approach outperforms a strong CNN baseline on the synthesized digits datasets and shows promising results on KITTI car detection.
In this paper, we introduce a new dataset consisting of 360,001 focused natural language descriptions for 10,738 images. This dataset, the Visual Madlibs dataset, is collected using automatically produced fill-in-the-blank templates designed to gathe r targeted descriptions about: people and objects, their appearances, activities, and interactions, as well as inferences about the general scene or its broader context. We provide several analyses of the Visual Madlibs dataset and demonstrate its applicability to two new description generation tasks: focused description generation, and multiple-choice question-answering for images. Experiments using joint-embedding and deep learning methods show promising results on these tasks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا