ترغب بنشر مسار تعليمي؟ اضغط هنا

We present first results from a number of experiments conducted on a 0.53 kg cylindrical dumbbell-shaped sapphire crystal. This is the first reported optomechanical experiment of this nature utilising a novel modification to the typical cylindrical a rchitecture. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects result in parametric frequency modulation of resonant microwave whispering gallery modes that are simultaneously excited within the crystal. A novel low-noise microwave readout system is implemented allowing extremely low noise measurements of this frequency modulation near our modes of interest, having a phase noise floor of -165 dBc/Hz at 100 kHz. Fine-tuning of the crystals suspension has allowed for the optimisation of mechanical quality factors in preparation for cryogenic experiments, with a value of Q=8 x 10^7 achieved at 127 kHz. This results in a Q x f product of 10^13, equivalent to the best measured values in a macroscopic sapphire mechanical system. Results are presented that demonstrate the excitation of mechanical modes via radiation pressure force, allowing an experimental method of determining the transducers displacement sensitivity df/dx, and calibrating the system. Finally, we demonstrate parametric back-action phenomenon within the system. These are all important steps towards the overall goal of the experiment; to cool a macroscopic device to the quantum ground state at millikelvin temperatures.
We report on the sub-Doppler laser cooling of neutral $^{171}$Yb and $^{173}$Yb in a magneto-optical trap using the $^{1}S_{0}$-$^{1}P_{1}$ transition at 398.9nm. We use two independent means to estimate the temperature of the atomic cloud for severa l of the Yb isotopes. The two methods of MOT-cloud-imaging and release-and-recapture show consistency with one another. Temperatures below 400$mu$K and 200$mu$K are recorded for $^{171}$Yb and $^{173}$Yb, respectively, while ~1mK is measured for both $^{172}$Yb and $^{174}$Yb. By comparison, the associated 1D Doppler cooling temperature limit is 694$mu$K. The sub-Doppler cooling of the I=1/2 $^{171}$Yb isotope in a $sigma^{+}-sigma^{-}$ light-field trap adds further evidence that the Sisyphus cooling mechanism is occurring in such 3D magneto-optical traps.
We present the first experimental study of a new type of power recycling microwave interferometer designed for low noise measurements. This system enhances sensitivity to phase fluctuations in a Device Under Test, independent of input power levels. T he single sideband thermal white phase noise floor of the system has been lowered by 8 dB (reaching -185 dBc/Hz at 1 kHz offset frequency) at relatively low power levels (13 dBm).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا