ترغب بنشر مسار تعليمي؟ اضغط هنا

Reeb graphs are widely used in a range of fields for the purposes of analyzing and comparing complex spaces via a simpler combinatorial object. Further, they are closely related to extended persistence diagrams, which largely but not completely encod e the information of the Reeb graph. In this paper, we investigate the effect on the persistence diagram of a particular continuous operation on Reeb graphs; namely the (truncated) smoothing operation. This construction arises in the context of the Reeb graph interleaving distance, but separately from that viewpoint provides a simplification of the Reeb graph which continuously shrinks small loops. We then use this characterization to initiate the study of inverse problems for Reeb graphs using smoothing by showing which paths in persistence diagram space (commonly known as vineyards) can be realized by a path in the space of Reeb graphs via these simple operations. This allows us to solve the inverse problem on a certain family of piecewise linear vineyards when fixing an initial Reeb graph.
In this paper, we introduce an extension of smoothing on Reeb graphs, which we call truncated smoothing; this in turn allows us to define a new family of metrics which generalize the interleaving distance for Reeb graphs. Intuitively, we chop off par ts near local minima and maxima during the course of smoothing, where the amount cut is controlled by a parameter $tau$. After formalizing truncation as a functor, we show that when applied after the smoothing functor, this prevents extensive expansion of the range of the function, and yields particularly nice properties (such as maintaining connectivity) when combined with smoothing for $0 leq tau leq 2varepsilon$, where $varepsilon$ is the smoothing parameter. Then, for the restriction of $tau in [0,varepsilon]$, we have additional structure which we can take advantage of to construct a categorical flow for any choice of slope $m in [0,1]$. Using the infrastructure built for a category with a flow, this then gives an interleaving distance for every $m in [0,1]$, which is a generalization of the original interleaving distance, which is the case $m=0$. While the resulting metrics are not stable, we show that any pair of these for $m,m in [0,1)$ are strongly equivalent metrics, which in turn gives stability of each metric up to a multiplicative constant. We conclude by discussing implications of this metric within the broader family of metrics for Reeb graphs.
It is well-known that both the pathwidth and the outer-planarity of a graph can be used to obtain lower bounds on the height of a planar straight-line drawing of a graph. But both bounds fall short for some graphs. In this paper, we consider two othe r parameters, the (simple) homotopy height and the (simple) grid-major height. We discuss the relationship between them and to the other parameters, and argue that they give lower bounds on the straight-line drawing height that are never worse than the ones obtained from pathwidth and outer-planarity.
In this article, we provide new structural results and algorithms for the Homotopy Height problem. In broad terms, this problem quantifies how much a curve on a surface needs to be stretched to sweep continuously between two positions. More precisely , given two homotopic curves $gamma_1$ and $gamma_2$ on a combinatorial (say, triangulated) surface, we investigate the problem of computing a homotopy between $gamma_1$ and $gamma_2$ where the length of the longest intermediate curve is minimized. Such optimal homotopies are relevant for a wide range of purposes, from very theoretical questions in quantitative homotopy theory to more practical applications such as similarity measures on meshes and graph searching problems. We prove that Homotopy Height is in the complexity class NP, and the corresponding exponential algorithm is the best one known for this problem. This result builds on a structural theorem on monotonicity of optimal homotopies, which is proved in a companion paper. Then we show that this problem encompasses the Homotopic Frechet distance problem which we therefore also establish to be in NP, answering a question which has previously been considered in several different settings. We also provide an O(log n)-approximation algorithm for Homotopy Height on surfaces by adapting an earlier algorithm of Har-Peled, Nayyeri, Salvatipour and Sidiropoulos in the planar setting.
This article investigates when homotopies can be converted to monotone homotopies without increasing the lengths of curves. A monotone homotopy is one which consists of curves which are simple or constant, and in which curves are pairwise disjoint. W e show that, if the boundary of a Riemannian disc can be contracted through curves of length less than $L$, then it can also be contracted monotonously through curves of length less than $L$. This proves a conjecture of Chambers and Rotman. Additionally, any sweepout of a Riemannian $2$-sphere through curves of length less than $L$ can be replaced with a monotone sweepout through curves of length less than $L$. Applications of these results are also discussed.
We consider the problem of assigning radii to a given set of points in the plane, such that the resulting set of circles is connected, and the sum of radii is minimized. We show that the problem is polynomially solvable if a connectivity tree is give n. If the connectivity tree is unknown, the problem is NP-hard if there are upper bounds on the radii and open otherwise. We give approximation guarantees for a variety of polynomial-time algorithms, describe upper and lower bounds (which are matching in some of the cases), provide polynomial-time approximation schemes, and conclude with experimental results and open problems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا