ترغب بنشر مسار تعليمي؟ اضغط هنا

Realizable piecewise linear paths of persistence diagrams with Reeb graphs

130   0   0.0 ( 0 )
 نشر من قبل Elizabeth Munch
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reeb graphs are widely used in a range of fields for the purposes of analyzing and comparing complex spaces via a simpler combinatorial object. Further, they are closely related to extended persistence diagrams, which largely but not completely encode the information of the Reeb graph. In this paper, we investigate the effect on the persistence diagram of a particular continuous operation on Reeb graphs; namely the (truncated) smoothing operation. This construction arises in the context of the Reeb graph interleaving distance, but separately from that viewpoint provides a simplification of the Reeb graph which continuously shrinks small loops. We then use this characterization to initiate the study of inverse problems for Reeb graphs using smoothing by showing which paths in persistence diagram space (commonly known as vineyards) can be realized by a path in the space of Reeb graphs via these simple operations. This allows us to solve the inverse problem on a certain family of piecewise linear vineyards when fixing an initial Reeb graph.



قيم البحث

اقرأ أيضاً

Given a persistence diagram with $n$ points, we give an algorithm that produces a sequence of $n$ persistence diagrams converging in bottleneck distance to the input diagram, the $i$th of which has $i$ distinct (weighted) points and is a $2$-approxim ation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the $i$th and the $(i+1)$st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in $O(n)$ space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams -- a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation.
175 - Tamal K. Dey , Tao Hou 2021
Graphs model real-world circumstances in many applications where they may constantly change to capture the dynamic behavior of the phenomena. Topological persistence which provides a set of birth and death pairs for the topological features is one in strument for analyzing such changing graph data. However, standard persistent homology defined over a growing space cannot always capture such a dynamic process unless shrinking with deletions is also allowed. Hence, zigzag persistence which incorporates both insertions and deletions of simplices is more appropriate in such a setting. Unlike standard persistence which admits nearly linear-time algorithms for graphs, such results for the zigzag version improving the general $O(m^omega)$ time complexity are not known, where $omega< 2.37286$ is the matrix multiplication exponent. In this paper, we propose algorithms for zigzag persistence on graphs which run in near-linear time. Specifically, given a filtration with $m$ additions and deletions on a graph with $n$ vertices and edges, the algorithm for $0$-dimension runs in $O(mlog^2 n+mlog m)$ time and the algorithm for 1-dimension runs in $O(mlog^4 n)$ time. The algorithm for $0$-dimension draws upon another algorithm designed originally for pairing critical points of Morse functions on $2$-manifolds. The algorithm for $1$-dimension pairs a negative edge with the earliest positive edge so that a $1$-cycle containing both edges resides in all intermediate graphs. Both algorithms achieve the claimed time complexity via dynamic graph data structures proposed by Holm et al. In the end, using Alexander duality, we extend the algorithm for $0$-dimension to compute the $(p-1)$-dimensional zigzag persistence for $mathbb{R}^p$-embedded complexes in $O(mlog^2 n+mlog m+nlog n)$ time.
Reeb graphs are structural descriptors that capture shape properties of a topological space from the perspective of a chosen function. In this work we define a combinatorial metric for Reeb graphs of orientable surfaces in terms of the cost necessary to transform one graph into another by edit operations. The main contributions of this paper are the stability property and the optimality of this edit distance. More precisely, the stability result states that changes in the functions, measured by the maximum norm, imply not greater changes in the corresponding Reeb graphs, measured by the edit distance. The optimality result states that our edit distance discriminates Reeb graphs better than any other metric for Reeb graphs of surfaces satisfying the stability property.
Persistence diagrams are important tools in the field of topological data analysis that describe the presence and magnitude of features in a filtered topological space. However, current approaches for comparing a persistence diagram to a set of other persistence diagrams is linear in the number of diagrams or do not offer performance guarantees. In this paper, we apply concepts from locality-sensitive hashing to support approximate nearest neighbor search in the space of persistence diagrams. Given a set $Gamma$ of $n$ $(M,m)$-bounded persistence diagrams, each with at most $m$ points, we snap-round the points of each diagram to points on a cubical lattice and produce a key for each possible snap-rounding. Specifically, we fix a grid over each diagram at several resolutions and consider the snap-roundings of each diagram to the four nearest lattice points. Then, we propose a data structure with $tau$ levels $mathbb{D}_{tau}$ that stores all snap-roundings of each persistence diagram in $Gamma$ at each resolution. This data structure has size $O(n5^mtau)$ to account for varying lattice resolutions as well as snap-roundings and the deletion of points with low persistence. To search for a persistence diagram, we compute a key for a query diagram by snapping each point to a lattice and deleting points of low persistence. Furthermore, as the lattice parameter decreases, searching our data structure yields a six-approximation of the nearest diagram in $Gamma$ in $O((mlog{n}+m^2)logtau)$ time and a constant factor approximation of the $k$th nearest diagram in $O((mlog{n}+m^2+k)logtau)$ time.
In this paper, we introduce an extension of smoothing on Reeb graphs, which we call truncated smoothing; this in turn allows us to define a new family of metrics which generalize the interleaving distance for Reeb graphs. Intuitively, we chop off par ts near local minima and maxima during the course of smoothing, where the amount cut is controlled by a parameter $tau$. After formalizing truncation as a functor, we show that when applied after the smoothing functor, this prevents extensive expansion of the range of the function, and yields particularly nice properties (such as maintaining connectivity) when combined with smoothing for $0 leq tau leq 2varepsilon$, where $varepsilon$ is the smoothing parameter. Then, for the restriction of $tau in [0,varepsilon]$, we have additional structure which we can take advantage of to construct a categorical flow for any choice of slope $m in [0,1]$. Using the infrastructure built for a category with a flow, this then gives an interleaving distance for every $m in [0,1]$, which is a generalization of the original interleaving distance, which is the case $m=0$. While the resulting metrics are not stable, we show that any pair of these for $m,m in [0,1)$ are strongly equivalent metrics, which in turn gives stability of each metric up to a multiplicative constant. We conclude by discussing implications of this metric within the broader family of metrics for Reeb graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا