ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity was recently discovered in rhombohedral trilayer graphene (RTG) in the absence of a moire potential. Intringuigly, superconductivity is observed proximate to a metallic state with reduced isospin symmetry, but it remains unknown whe ther this is a coincidence or a key ingredient for superconductivity. Using a Hartree-Fock analysis and constraints from experiments, we argue that the symmetry breaking is inter-valley coherent (IVC) in nature. We evaluate IVC fluctuations as a possible pairing glue, and find that they lead to unconventional superconductivity which is $p$-wave when fluctuations are strong. We further elucidate how the inter-valley Hunds coupling determines the spin-structure of the IVC ground state and breaks the degeneracy between spin-singlet and triplet superconductivity. Intriguingly, if the normal state is spin-unpolarized, we find that a ferromagnetic Hunds coupling favors spin-singlet superconductivity, in agreement with experiments. Instead, if the normal state is spin-polarized, then IVC fluctuations lead to spin-triplet pairing.
41 - Gilad Kishony , Erez Berg 2021
We study an interface between a Kitaev spin liquid (KSL) in the chiral phase and a non-chiral superconductor. When the coupling across the interface is sufficiently strong, the interface undergoes a transition into a phase characterized by a condensa tion of a bound state of a Bogoliubov quasiparticle in the superconductor and an emergent fermionic excitation in the spin liquid. In the condensed phase, electrons in the superconductor can coherently convert into emergent fermions in the spin liquid and vice versa. As a result, the chiral Majorana edge mode of the spin liquid becomes visible in the electronic local density of states at the interface, which can be measured in scanning tunneling spectroscopy experiments. We demonstrate the existence of this phase transition, and the non-local order parameter that characterizes it, using density matrix renormalization group simulations of a KSL strip coupled at its edge to a superconductor. An analogous phase transition can occur in a simpler system composed of a one-dimensional spin chain with a spin-flip $mathbb{Z}_2$ symmetry coupled to a superconductor.
We study properties of thermal transport and quantum many-body chaos in a lattice model with $Ntoinfty$ oscillators per site, coupled by strong nonlinear terms. We first consider a model with only optical phonons. We find that the thermal diffusivity $D_{rm th}$ and chaos diffusivity $D_L$ (defined as $D_L = v_B^2/ lambda_L$, where $v_B$ and $lambda_L$ are the butterfly velocity and the scrambling rate, respectively) satisfy $D_{rm th} approx gamma D_L$ with $gammagtrsim 1$. At intermediate temperatures, the model exhibits a ``quantum phonon fluid regime, where both diffusivities satisfy $D^{-1} propto T$, and the thermal relaxation time and inverse scrambling rate are of the order the of Planckian timescale $hbar/k_B T$. We then introduce acoustic phonons to the model and study their effect on transport and chaos. The long-wavelength acoustic modes remain long-lived even when the system is strongly coupled, due to Goldstones theorem. As a result, for $d=1,2$, we find that $D_{rm th}/D_Lto infty$, while for $d=3$, $D_{rm th}$ and $D_{L}$ remain comparable.
Strain tuning Sr$_{2}$RuO$_{4}$ through the Lifshitz point, where the Van Hove singularity of the electronic spectrum crosses the Fermi energy, is expected to cause a change in the temperature dependence of the electrical resistivity from its Fermi l iquid behavior $rhosim T^{2}$ to $rhosim T^{2}{rm log}left(1/Tright)$, a behavior consistent with experiments by Barber et al. [Phys. Rev. Lett. 120, 076601 (2018)]. This expectation originates from the same multi-band scattering processes with large momentum transfer that were recently shown to account for the linear in $T$ resistivity of the strange metal Sr$_{3}$Ru$_{2}$O$_{7}$. In contrast, the thermal resistivity $rho_{Q}equiv T/kappa$, where $kappa$ is the thermal conductivity, is governed by qualitatively distinct processes that involve a broad continuum of compressive modes, i.e. long wavelength density excitations in Van Hove systems. While these compressive modes do not affect the charge current, they couple to thermal transport and yield $rho_{Q}propto T^{3/2}$. As a result, we predict that the Wiedemann-Franz law in strained Sr$_{2}$RuO$_{4}$ should be violated with a Lorenz ratio $Lpropto T^{1/2}{rm log}left(1/Tright)$. We expect this effect to be observable in the temperature and strain regime where the anomalous charge transport was established.
100 - Gal Shavit , Erez Berg , Ady Stern 2021
We introduce and analyze a model that sheds light on the interplay between correlated insulating states, superconductivity, and flavor-symmetry breaking in magic angle twisted bilayer graphene. Using a variational mean-field theory, we determine the normal-state phase diagram of our model as a function of the band filling. The model features robust insulators at even integer fillings, occasional weaker insulators at odd integer fillings, and a pattern of flavor-symmetry breaking at non-integer fillings. Adding a phonon-mediated inter-valley retarded attractive interaction, we obtain strong-coupling superconducting domes, whose structure is in qualitative agreement with experiments. Our model elucidates how the intricate form of the interactions and the particle-hole asymmetry of the electronic structure determine the phase diagram. It also explains how subtle differences between devices may lead to the different behaviors observed experimentally. A similar model can be applied with minor modifications to other moir{e} systems, such as twisted trilayer graphene.
We present an exact static black hole solution of Einstein field equations in the framework of Horndeski Theory by imposing spherical symmetry and choosing the coupling constants in the Lagrangian so that the only singularity in the solution is at $r =0$. The analytical extension is built in two particular domains of the parametric space. In the first domain we obtain a solution exhibiting an event horizon analogous to that of the Schwarzschild geometry. For the second domain, we show that the metric displays an exterior event horizon and a Cauchy horizon which encloses a singularity. For both branches we obtain the corresponding Hawking temperature which, when compared to that of the Schwarzschild black hole, acquires a correction proportional to a combination of the coupling constants. Such a correction also modifies the definition of the entropy of the black hole.
We investigate the creation of scalar particles inside a region delimited by a bubble which is expanding with non-zero acceleration. The bubble is modelled as a thin shell and plays the role of a moving boundary, thus influencing the fluctuations of the test scalar field inside it. Bubbles expanding in Minkowski spacetime as well as those dividing two de Sitter spacetimes are explored in a unified way. Our results for the Bogoliubov coefficient $beta_k$ in the adiabatic approximation show that in all cases the creation of scalar particles decreases with the mass, and is much more significant in the case of nonzero curvature. They also show that the dynamics of the bubble and its size are relevant for particle creation, but in the dS-dS case the combination of both effects leads to a behaviour different from that of Minkowski space-time, due to the presence of a length scale (the Hubble radius of the internal geometry).
357 - Gilad Margalit , Erez Berg , 2021
We study possible superconducting states in transition metal dichalcogenide (TMD) monolayers, assuming an on-site pairing potential that includes both intra- and inter-orbital terms. We find that if the mirror symmetry with respect to the systems pla ne is broken (e.g., by a substrate), this type of pairing can give rise to unconventional superconductivity, including time-reversal-invariant nodal and fully gapped topological phases. Using a multi-orbital renormalization group procedure, we show how these phases may result from the interplay between the local Coulomb repulsion, Hunds rule coupling, and phonon-mediated attraction. In particular, for a range of interaction parameters, the system transitions from a trivial phase to a nodal phase and finally to a gapped topological phase upon increasing the strength of the mirror symmetry breaking term.
52 - Andrew C. Yuan , Erez Berg , 2021
It has been shown [1] that many seemingly contradictory experimental findings concerning the superconducting state in Sr$_2$RuO$_4$ can be accounted for as resulting from the existence of an assumed tetra-critical point at near ambient pressure at wh ich $d_{x^2-y^2}$ and $g_{xy(x^2-y^2)}$ superconducting states are degenerate. We perform both a Landau-Ginzburg and a microscopic mean-field analysis of the effect of spatially varying strain on such a state. In the presence of finite $xy$ shear strain, the superconducting state consists of two possible symmetry-related time-reversal symmetry (TRS) preserving states: $d pm g$. However, at domain walls between two such regions, TRS can be broken, resulting in a $d+ig$ state. More generally, we find that various natural patterns of spatially varying strain induce a rich variety of superconducting textures, including half-quantum fluxoids. These results may resolve some of the apparent inconsistencies between the theoretical proposal and various experimental observations, including the suggestive evidence of half-quantum vortices [2]. [1] Steven A Kivelson, Andrew C Yuan, BJ Ramshaw, and Ronny Thomale, A proposal for reconciling diverse experiments on the superconducting state in Sr$_2$RuO$_4$, npj Quantum Mater 5 (2020). [2] J Jang, DG Ferguson, V Vakaryuk, Raffi Budakian, SB Chung, PM Goldbart, and Y Maeno, Observation of half-height magnetization steps in Sr$_2$RuO$_4$, Science 331, 186-188 (2011).
156 - Ari M. Turner , Erez Berg , 2021
We consider the stability of fragile topological bands protected by space-time inversion symmetry in the presence of strong electron-electron interactions. At the single-particle level, the topological nature of the bands prevents the opening of a ga p between them. In contrast, we show that when the fragile bands are half filled, interactions can open a gap in the many-body spectrum without breaking any symmetry or mixing degrees of freedom from remote bands. Furthermore, the resulting ground state is not topologically ordered. Thus, a fragile topological band structure does not present an obstruction to forming a featureless insulator ground state. Our construction relies on the formation of fermionic bound states of two electrons and one hole, known as trions. The trions form a band whose coupling to the electronic band enables the gap opening. This result may be relevant to the gapped state indicated by recent experiments in magic angle twisted bilayer graphene at charge neutrality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا