ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider plain vanilla European options written on an underlying asset that follows a continuous time semi-Markov multiplicative process. We derive a formula and a renewal type equation for the martingale option price. In the case in which intertr ade times follow the Mittag-Leffler distribution, under appropriate scaling, we prove that these option prices converge to the price of an option written on geometric Brownian motion time-changed with the inverse stable subordinator. For geometric Brownian motion time changed with an inverse subordinator, in the more general case when the subordinators Laplace exponent is a special Bernstein function, we derive a time-fractional generalization of the equation of Black and Scholes.
This paper is devoted to a fractional generalization of the Dirichlet distribution. The form of the multivariate distribution is derived assuming that the $n$ partitions of the interval $[0,W_n]$ are independent and identically distributed random var iables following the generalized Mittag-Leffler distribution. The expected value and variance of the one-dimensional marginal are derived as well as the form of its probability density function. A related generalized Dirichlet distribution is studied that provides a reasonable approximation for some values of the parameters. The relation between this distribution and other generalizations of the Dirichlet distribution is discussed. Monte Carlo simulations of the one-dimensional marginals for both distributions are presented.
We introduce two non-homogeneous processes: a fractional non-homogeneous Poisson process of order $k$ and and a fractional non-homogeneous Polya-Aeppli process of order $k$. We characterize these processes by deriving their non-local governing equati ons. We further study the covariance structure of the processes and investigate the long-range dependence property.
This study empirically re-examines fat tails in stock return distributions by applying statistical methods to an extensive dataset taken from the Korean stock market. The tails of the return distributions are shown to be much fatter in recent periods than in past periods and much fatter for small-capitalization stocks than for large-capitalization stocks. After controlling for the 1997 Korean foreign currency crisis and using the GARCH filter models to control for volatility clustering in the returns, the fat tails in the distribution of residuals are found to persist. We show that market crashes and volatility clustering may not sufficiently account for the existence of fat tails in return distributions. These findings are robust regardless of period or type of stock group.
In this paper, we provide a statistical analysis of high-resolution contact pattern data within primary and secondary schools as collected by the SocioPatterns collaboration. Students are graphically represented as nodes in a temporally evolving netw ork, in which links represent proximity or interaction between students. This article focuses on link- and node-level statistics, such as the on- and off-durations of links as well as the activity potential of nodes and links. Parametric models are fitted to the on- and off-durations of links, inter-event times and node activity potentials and, based on these, we propose a number of theoretical models that are able to reproduce the collected data within varying levels of accuracy. By doing so, we aim to identify the minimal network-level properties that are needed to closely match the real-world data, with the aim of combining this contact pattern model with epidemic models in future work.
The fractional non-homogeneous Poisson process was introduced by a time-change of the non-homogeneous Poisson process with the inverse $alpha$-stable subordinator. We propose a similar definition for the (non-homogeneous) fractional compound Poisson process. We give both finite-dimensional and functional limit theorems for the fractional non-homogeneous Poisson process and the fractional compound Poisson process. The results are derived by using martingale methods, regular variation properties and Anscombes theorem. Eventually, some of the limit results are verified in a Monte Carlo simulation.
386 - Enrico Scalas 2017
Using two simple examples, the continuous-time random walk as well as a two state Markov chain, the relation between generalized anomalous relaxation equations and semi-Markov processes is illustrated. This relation is then used to discuss continuous -time random statistics in a general setting, for statistics of convolution-type. Two examples are presented in some detail: the sum statistic and the maximum statistic.
We consider a simplified model of the continuous double auction where prices are integers varying from $1$ to $N$ with limit orders and market orders, but quantity per order limited to a single share. For this model, the order process is equivalent t o two $M/M/1$ queues. We study the behaviour of the auction in the low-traffic limit where limit orders are immediately transformed into market orders. In this limit, the distribution of prices can be computed exactly and gives a reasonable approximation of the price distribution when the ratio between the rate of order arrivals and the rate of order executions is below $1/2$. This is further confirmed by the analysis of the first passage time in $1$ or $N$.
Non-Markovian processes are widespread in natural and human-made systems, yet explicit model- ling and analysis of such systems is underdeveloped. We consider a non-Markovian dynamic network with random link activation and deletion (RLAD) and heavy t ailed Mittag-Leffler distribution for the inter-event times. We derive an analytically and computationally tractable system of Kolmogorov- like forward equations utilising the Caputo derivative for the probability of having a given number of active links in the network and solve them. Simulations for the RLAD are also studied for power-law inter-event times and we show excellent agreement with the Mittag-Leffler model. This agreement holds even when the RLAD network dynamics is coupled with the susceptible-infected-susceptible (SIS) spreading dynamics. Thus, the analytically solvable Mittag-Leffler model provides an excel- lent approximation to the case when the network dynamics is characterised by power-law distributed inter-event times. We further discuss possible generalizations of our result.
This paper introduces a generalization of the so-called space-fractional Poisson process by extending the difference operator acting on state space present in the associated difference-differential equations to a much more general form. It turns out that this generalization can be put in relation to a specific subordination of a homogeneous Poisson process by means of a subordinator for which it is possible to express the characterizing Levy measure explicitly. Moreover, the law of this subordinator solves a one-sided first-order differential equation in which a particular convolution-type integral operator appears, called Prabhakar derivative. In the last section of the paper, a similar model is introduced in which the Prabhakar derivative also acts in time. In this case, too, the probability generating function of the corresponding process and the probability distribution are determined.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا