ترغب بنشر مسار تعليمي؟ اضغط هنا

We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of $M_{stel} = 8.8 times 10^{10} - 6.0 times 10^{11} M_{sun}$. Using smoothed particle h ydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 halos with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter halos and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed M_BH - sigma relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of two compared to models without any AGN feedback at all halo masses. However, massive galaxies simulated with thermal AGN feedback show a factor of ~10-100 higher X-ray luminosities than observed. The mechanical/radiation feedback model reproduces the observed correlation between X-ray luminosities and velocity dispersion, e.g. for galaxies with sigma = 200 km/s, the X-ray luminosity is reduced from $10^{42}$ erg/s to $10^{40}$ erg/s. It also efficiently suppresses late time star formation, reducing the specific star formation rate from $10^{-10.5}$ $yr^{-1}$ to $10^{-14}$ $yr^{-1}$ on average and resulting in quiescent galaxies since z=2, whereas the thermal feedback model shows higher late time in-situ star formation rates than observed.
We study the effect of AGN mechanical and radiation feedback on the formation of bulge dominated galaxies via mergers of disc galaxies. The merging galaxies have mass-ratios of 1:1 to 6:1 and include pre-existing hot gaseous halos to properly account for the global impact of AGN feedback. Using smoothed particle hydrodynamics simulation code (GADGET-3) we compare three models with different AGN feedback models: (1) no black hole and no AGN feedback; (2) thermal AGN feedback; and (3) mechanical and radiative AGN feedback. The last model is motivated by observations of broad line quasars which show winds with initial velocities of $v_w ge$ 10,000 km/s and also heating associated with the central AGN X-ray radiation. The primary changes in gas properties due to mechanical AGN feedback are lower thermal X-ray luminosity from the final galaxy - in better agreement with observations - and galactic outflows with higher velocity $sim 1000$ km/s similar to recent direct observations of nearby merger remnants. The kinetic energy of the outflowing gas is a factor of $sim$ 20 higher than in the thermal feedback case. All merger remnants with momentum-based AGN feedback with $v_w sim 10,000$ km/s and $epsilon_w=2 times 10^{-3}$, independent of their progenitor mass-ratios, reproduce the observed relations between stellar velocity dispersion and black hole mass ($M_{rm bh} - sigma$) as well as X-ray luminosity ($L_X - sigma$) with $10^{37.5}$ erg/s $lesssim L_X (0.3-8~{rm keV}) lesssim 10^{39.2}$ erg/s for velocity dispersions in the range of 120 km/s $lesssim sigma lesssim$ 190 km/s. In addition, the mechanical feedback produces a much greater AGN variability. We also show that gas is more rapidly and impulsively stripped from the galactic centres driving a moderate increase in galaxy size and decrease in central density with the mechanical AGN feedback model.
We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitational ly bound to the BH. We also include the feedback from the X-ray radiation emitted by the BH, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the BH growth is similar to what has been obtained by earlier workers using the Springel, Di Matteo, & Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v_w ~ 1000-3000 km/s) compared to the standard thermal feedback model (v_w ~ 50-100 km/s). While the thermal feedback model emits only 0.1 % of BH released energy in winds, the momentum feedback model emits more than 30 % of the total energy released by the BH in winds. In the momentum feedback model, the degree of fluctuation in both radiant and wind output is considerably larger than in the standard treatments. We check that the new model of the BH mass accretion agrees with analytic results for the standard Bondi problem.
75 - Ena Choi , James M. Stone 2011
Thermal instability (TI) can strongly affect the structure and dynamics of the interstellar medium (ISM) in the Milky Way and other disk galaxies. Thermal conduction plays an important role in the TI by stabilizing small scales and limiting the size of the smallest condensates. In the magnetized ISM, however, heat is conducted anisotropically (primarily along magnetic field lines). We investigate the effects of anisotropic thermal conduction on the nonlinear regime of the TI by performing two-dimensional magnetohydrodynamic simulations. We present models with magnetic fields of different initial geometries and strengths, and compare them to hydrodynamic models with isotropic conduction. We find anisotropic conduction does not significantly alter the overall density and temperature statistics in the saturated state of the TI. However, it can strongly affect the shapes and sizes of cold clouds formed by the TI. For example, for uniform initial fields long filaments of cold gas are produced that are reminiscent of some observed HI clouds. For initially tangled fields, such filaments are not produced. We also show that anisotropic conduction suppresses turbulence generated by evaporative flows from the surfaces of cold blobs, which may have implications for mechanisms for driving turbulence in the ISM.
The deposition of mechanical feedback from a supermassive black hole (SMBH) in an active galactic nucleus (AGN) into the surrounding galaxy occurs via broad-line winds which must carry mass and radial momentum as well as energy. The effect can be sum marized by the dimensionless parameter $eta=dot{M_outflow}/dot{M_accretion}= (2 epsilon_w c^2)/v_w^2$ where ($epslion_w equiv dot{E}_w/(dot{M_accretion} c^2)$) is the efficiency by which accreted matter is turned into wind energy in the disc surrounding the central SMBH. The outflowing mass and omentum are proportional to $eta$, and many prior treatments have essentially assumed that $eta=0$. We perform one- and two-dimensional simulations and find that the growth of the central SMBH is very sensitive to the inclusion of the mass and momentum driving but is insensitive to the assumed mechanical efficiency. For example in representative calculations, the omission of momentum and mass feedback leads to an hundred fold increase in the mass of the SMBH to over $10^{10} Msun$. When allowance is made for momentum driving, the final SMBH mass is much lower and the wind efficiencies which lead to the most observationally acceptable results are relatively low with $epsilon_w lesssim 10^{-4}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا