ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine the prospects for measurement of the Hubble parameter $H_0$ via observation of the secular parallax of other galaxies due to our own motion relative to the cosmic microwave background rest frame. Peculiar velocities make distance measureme nts to individual galaxies highly uncertain, but a survey sampling many galaxies can still yield a precise $H_0$ measurement. We use both a Fisher information formalism and simulations to forecast errors in $H_0$ from such surveys, marginalizing over the unknown peculiar velocities. The optimum survey observes $sim 10^2$ galaxies within a redshift $z_mathrm{max}=0.05$. The required errors on proper motion are comparable to those that can be achieved by Gaia and future astrometric instruments. A measurement of $H_0$ via parallax has the potential to shed light on the tension between different measurements of $H_0$.
The next generation of CMB experiments (CMB Stage-4) will produce a Sunyaev-Zeldovich (SZ) cluster catalog containing $sim10^{5}$ objects, two orders of magnitudes more than currently available. In this paper, we discuss the detectability of the pola rized signal generated by scattering of the CMB quadrupole on the cluster electron gas using this catalog. We discuss the possibility of using this signal to measure the relationship between cluster optical depth and mass. We find that the area of observation of S4 maximizes the signal-to-noise (S/N) on the polarized signal but that this S/N is extremely small for an individual cluster, of order 0.5% for a typical cluster in our catalog, the main source of noise being the residual primordial E-mode signal. However, we find that the signal could be detected using the full cluster catalog and that the significance of the result will increase linearly with the size of the CMB S4 telescope mirror.
We present in this paper a new Bayesian semi-blind approach for foreground removal in observations of the 21-cm signal with interferometers. The technique, which we call HIEMICA (HI Expectation-Maximization Independent Component Analysis), is an exte nsion of the Independent Component Analysis (ICA) technique developed for two-dimensional (2D) CMB maps to three-dimensional (3D) 21-cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from signal based on the diversity of their power spectra. Only relying on the statistical independence of the components, this approach can jointly estimate the 3D power spectrum of the 21-cm signal and, the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21-cm intensity mapping observations under idealized assumptions of instrumental effects. We also discuss the impact when the noise properties are not known completely. As a first step toward solving the 21 cm power spectrum analysis problem we compare the semi-blind HIEMICA technique with the commonly used Principal Component Analysis (PCA). Under the same idealized circumstances the proposed technique provides significantly improved recovery of the power spectrum. This technique can be applied straightforwardly to all 21-cm interferometric observations, including epoch of reionization measurements, and can be extended to single-dish observations as well.
We present results from an end-to-end simulation pipeline interferometric observations of cosmic microwave background polarization. We use both maximum-likelihood and Gibbs sampling techniques to estimate the power spectrum. In addition, we use Gibbs sampling for image reconstruction from interferometric visibilities. The results indicate the level to which various systematic errors (e.g., pointing errors, gain errors, beam shape errors, cross- polarization) must be controlled in order to successfully detect and characterize primordial B modes as well as other scientific goals. In addition, we show that Gibbs sampling is an effective method of image reconstruction for interferometric data in other astrophysical contexts.
We derive an optimal linear filter to suppress the noise from the COBE DMR sky maps for a given power spectrum. We then apply the filter to the first-year DMR data, after removing pixels within $20^circ$ of the Galactic plane from the data. The filte red data have uncertainties 12 times smaller than the noise level of the raw data. We use the formalism of constrained realizations of Gaussian random fields to assess the uncertainty in the filtered sky maps. In addition to improving the signal-to-noise ratio of the map as a whole, these techniques allow us to recover some information about the CMB anisotropy in the missing Galactic plane region. From these maps we are able to determine which hot and cold spots in the data are statistically significant, and which may have been produced by noise. In addition, the filtered maps can be used for comparison with other experiments on similar angular scales.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا