ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the discovery of two kinematically anomalous atomic hydrogen (HI) clouds in M 100 (NGC 4321), which was observed as part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey i n HI 21 cm at 3.3 km s$^{-1}$ spectroscopic and 44 arcsec$times$30 arcsec spatial resolution using the Karl G. Jansky Very Large Array. These clouds were identified as structures that show significant kinematic offsets from the rotating disk of M100. The velocity offsets of 40 km s$^{-1}$ observed in these clouds are comparable to the offsets seen in intermediate-velocity clouds (IVCs) in the circumgalactic medium (CGM) of the Milky Way and nearby galaxies. We find that one anomalous cloud in M 100 is associated with star-forming regions detected in H$alpha$ and far-ultraviolet imaging. Our investigation shows that anomalous clouds in M 100 may originate from multiple mechanisms, such as star formation feedback-driven outflows, ram-pressure stripping, and tidal interactions with satellite galaxies. Moreover, we do not detect any cool CGM at 38.8 kpc from the center of M 100, giving an upper limit of N(HI) $le$ $1.7times10^{13}$ cm$^{-2}$ (3$sigma$). Since M 100 is in the Virgo cluster, the non-existence of neutral/cool CGM is a likely pathway for turning it into a red galaxy.
We present high angular resolution imaging of the quasar PSO J172.3556+18.7734 at $z=6.82$ with the Very Long Baseline Array (VLBA). This source currently holds the record of being the highest redshift radio-loud quasar. These observations reveal a d ominant radio source with a flux density of $398.4 pm 61.4~mu$Jy at 1.53 GHz, a deconvolved size of $9.9 times 3.5$ mas ($52.5 times 18.6$ pc), and an intrinsic brightness temperature of ($4.7 pm 0.7) times 10^7$ K. A weak unresolved radio extension from the main source is also detected at $sim~3.1sigma$ level. The total flux density recovered with the VLBA at 1.53 GHz is consistent with that measured with the Very Large Array (VLA) at a similar frequency. The quasar is not detected at 4.67 GHz with the VLBA, suggesting a steep spectral index with a limit of $alpha^{1.53}_{4.67} < -$1.55. The quasar is also not detected with the VLBA at 7.67 GHz. The overall characteristics of the quasar suggest that it is a very young radio source similar to lower redshift Gigahertz Peaked Spectrum radio sources, with an estimated kinematic age of $sim~10^3$ years. The VLA observations of this quasar revealed a second radio source in the field $23rlap{.}{}1$ away. This radio source, which does not have an optical or IR counterpart, is not detected with the VLBA at any of the observed frequencies. Its non-detection at the lowest observed VLBA frequency suggests that it is resolved out, implying a size larger than ~$0rlap{.}{}17$. It is thus likely situated at lower redshift than the quasar.
Radio sources at the highest redshifts can provide unique information on the first massive galaxies and black holes, the densest primordial environments, and the epoch of reionization. The number of astronomical objects identified at z>6 has increase d dramatically over the last few years, but previously only three radio-loud (R2500>10) sources had been reported at z>6, with the most distant being a quasar at z=6.18. Here we present the discovery and characterization of P172+18, a radio-loud quasar at z=6.823. This source has an MgII-based black hole mass of ~3x10^8 Msun and is one of the fastest accreting quasars, consistent with super-Eddington accretion. The ionized region around the quasar is among the largest measured at these redshifts, implying an active phase longer than the average lifetime of the z>6 quasar population. From archival data, there is evidence that its 1.4 GHz emission has decreased by a factor of two over the last two decades. The quasars radio spectrum between 1.4 and 3.0 GHz is steep (alpha=-1.31) and has a radio-loudness parameter R2500~90. A second steep radio source (alpha=-0.83) of comparable brightness to the quasar is only 23.1 away (~120 kpc at z=6.82; projection probability <2%), but shows no optical or near-infrared counterpart. Further follow-up is required to establish whether these two sources are physically associated.
We carry out a series of deep Karl G. Jansky Very Large Array (VLA) S-band observations of a sample of 21 quasars at $zsim6$. The new observations expand the searches of radio continuum emission to the optically faint quasar population at the highest redshift with rest-frame $4400 rm AA$ luminosities down to $3 times10^{11} L_{odot}$. We report the detections of two new radio-loud quasars: CFHQS J2242+0334 (hereafter J2242+0334) at $z=5.88$ and CFHQS J0227$-$0605 (hereafter J0227$-$0605) at $z=6.20$, detected with 3 GHz flux densities of $87.0 pm 6.3 mu rm Jy$ and $55.4 pm 6.7 mu rm Jy$, respectively. Their radio replaced{loudness}{loudnesses} are estimated to be $54.9 pm 4.7$ and $16.5 pm 3.2$, respectively. To better constrain the radio-loud fraction (RLF), we combine the new measurements with the archival VLA L-band data as well as available data from the literature, considering the upper limits for non-detections and deleted{and} possible selection effects. The final derived RLF is $9.4 pm 5.7%$ for the optically selected quasars at $zsim6$. We also compare the RLF to that of the quasar samples at low redshift and check the RLF in different quasar luminosity bins. The RLF for the optically faint objects is still poorly constrained due to the limited sample size. Our replaced{result}{results} show no evidence of significant quasar RLF evolution with redshift. There is also no clear trend of RLF evolution with quasar UV/optical luminosity due to the limited sample size of optically faint objects with deep radio observations.
We report the detection of the Zeeman effect in the 44 GHz Class I methanol maser line toward the high mass star forming region DR21W. There are two prominent maser spots in DR21W at the ends of a northwest-southeast linear arrangement. For the maser at the northwestern end (maser A), we fit three Gaussian components. In the strongest component, we obtain a significant Zeeman detection, with $zB_{rm los}=-23.4pm3.2$ Hz. If we use $z=-0.920$ Hz mG$^{-1}$ for the $F=5 rightarrow 4$ hyperfine transition, this corresponds to a magnetic field $|B_{rm los}|=25.4$ mG; $B_{rm los}$ would be higher if a different hyperfine was responsible for the 44 GHz maser, but our results also rule out some hyperfines, since fields in these regions cannot be hundreds of mG. Class I methanol masers form in outflows where shocks compress magnetic fields in proportion to gas density. Designating our detected $B_{rm los}=25$ mG as the magnetic field in the post-shock gas, we find that $B_{rm los}$ in the pre-shock gas should be 0.1-0.8 mG. Although there are no thermal-line Zeeman detections toward DR21W, such values are in good agreement with Zeeman measurements in the CN thermal line of 0.36 and 0.71 mG about $3.5$ away in DR21(OH) in gas of comparable density to the pre-shock gas density in DR21W. Comparison of our derived magnetic energy density to the kinetic energy density in DR21W indicates that magnetic fields likely play a significant role in shaping the dynamics of the post-shocked gas in DR21W.
We present a low-redshift (z=0.029) Damped Lyman-alpha (DLA) system in the spectrum of a background Quasi-Stellar Object (QSO). The DLA is associated with an interacting galaxy pair within a galaxy group. We detected weak Lyman-alpha emission centere d at the absorption trough of the DLA. The emission was likely tracing the neutral HI reservoir around the galaxies in the interacting pair, which scattered the Lyman-alpha generated by star formation within those galaxies. We also found that the interacting pair is enveloped by a large HI cloud with $M(HI)=2times 10^{10}M_{odot}$. We discovered blueshifted 21cm HI emission, corresponding to M(HI)=$ 2times10^{9}~M_{odot}$, associated with J151225.15+012950.4 - one of the galaxies in the interacting pair. The blueshifted HI was tracing gas flowing into the galaxy from behind and towards us. Gas at similar blueshifted velocities was seen in the QSO sightline thus suggesting the presence of a filamentary structure of the order of 100kpc feeding the galaxy. We estimated a mass inflow rate of $2 M_{odot}~yr^{-1}$ into the galaxy, which matches the star formation rate estimated from H-alpha emission. It is likely that the inflow of enormous amounts of gas has triggered star formation in this galaxy. The sudden acquisition of cold gas may lead to a starburst in this galaxy like those commonly seen in simulations.
(Abridged) Our sensitive ($sigma_{rm n} = 572,{rm nJy,beam}^{-1}$), high-resolution (FWHM $theta_{1/2} = 220,{rm mas} approx2mathrm{,kpc~at~}zgtrsim1$) 10$,$GHz image covering a single Karl G.~Jansky Very Large Array (VLA) primary beam (FWHM $Theta_{ 1/2} = 4.25$) in the GOODS-N field contains 32 sources with $S_{rm p}gtrsim2,mu{rm Jy~beam}^{-1}$ and optical and/or near-infrared (OIR) counterparts. Most are about as large as the star-forming regions that power them. Their median FWHM major axis is $langletheta_{rm M} rangle=167pm32,{rm mas} approx 1.2pm0.28,{rm kpc}$ with rms scatter 91 was $approx$ 0.79 kpc. In units of the effective radius $r_{rm e}$ that encloses half their flux, these radio sizes are $langle r_{rm e}rangle = 69pm13{rm mas} approx pm114mathrm{,pc}$ and have rms scatter $38mathrm{,mas}approx324mathrm{,pc}$. These sizes are smaller than those measured at lower radio frequencies, but agree with dust emission sizes measured at mm/sub-mm wavelengths and extinction-corrected H$alpha$ sizes. We made a low-resolution ($theta_{1/2}=1.0$) image with $approx10times$ better brightness sensitivity to detect extended sources and measure matched-resolution spectral indices $alpha_{1.4}^{10}$. It contains 6 new sources with $S_{rm p}gtrsim3.9,mu{rm Jy~beam}^{-1}$ and OIR counterparts. The median redshift of all 38 sources is $1.24pm0.15$. The 19 sources with 1.4$,$GHz counterparts have median spectral index $-0.74pm0.10$ with rms scatter $0.35$. Including upper limits on $alpha$ for sources not detected at 1.4$,$GHz flattens the median to $gtrsim-0.61$, suggesting that the $mu$Jy radio sources at higher redshifts, and hence selected at higher rest-frame frequencies, may have flatter spectra. If the non-thermal spectral index is -0.85, the median thermal fraction at rest-frame frequency 20$,$GHz is $gtrsim$48%.
78 - Nissim Kanekar 2013
We report results from a deep search for redshifted HI 21cm absorption from eight damped Lyman-$alpha$ absorbers (DLAs) detected in our earlier optical survey for DLAs towards radio-loud quasars. HI 21cm absorption was detected from the $z = 2.192$ D LA towards TXS2039+187, only the sixth case of such a detection at $z > 2$, while upper limits on the HI 21cm optical depth were obtained in six other DLAs at $z > 2$. Our detection of HI 21cm absorption in the eighth system, at $z = 2.289$ towards TXS0311+430, has been reported earlier. We also present high spatial resolution images of the background quasars at frequencies close to the redshifted HI 21cm line frequency, allowing us to estimate the covering factor of each DLA, and then determine its spin temperature $T_s$. For three non-detections of HI 21cm absorption, we obtain strong lower limits on the spin temperature, $T_s gtrsim 790$ K, similar to the bulk of the high-$z$ DLA population; three other DLAs yield weak lower limits, $T_s > 140-400$ K. However, for the two DLAs with detections of HI 21cm absorption, the derived spin temperatures are both low $T_s = (160 pm 35) times (f/0.35)$ K for the $z = 2.192$ DLA towards TXS2039+187 and $T_s = (72 pm 18) times (f/0.52)$ K for the $z = 2.289$ DLA towards TXS0311+430. These are the first two DLAs at $z > 1$ with $T_s$ values comparable to those obtained in local spiral galaxies. Based on the observed correlations between spin temperature and metallicity and velocity spread and metallicity in DLAs, we suggest that the hosts of the two absorbers are likely to be massive, high-metallicity galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا