ترغب بنشر مسار تعليمي؟ اضغط هنا

The time-resolved photoconductance of amorphous and crystalline LaAlO$_3$/SrTiO$_3$ interfaces, both hosting an interfacial 2-dimensional electron gas, is investigated under irradiation by variable-wavelengths, visible or ultraviolet photons. Unlike bare SrTiO$_3$ single crystals, showing relatively small photoconductance effects, both kinds of interfaces exhibit an intense and highly persistent photoconductance with extraordinarily long characteristic times. The temporal behaviour of the extra photoinduced conductance persisting after light irradiation shows a complex dependence on interface type (whether amorphous or crystalline), sample history and irradiation wavelength. textcolor{black}{The experimental results indicate that different mechanisms of photoexcitation are responsible for the photoconductance of crystalline and amorphous LaAlO$_3$/SrTiO$_3$ interfaces under visible light. We propose that the response of crystalline samples is mainly due to the promotion of electrons from the valence bands of both SrTiO$_3$ and LaAlO$_3$. This second channel is less relevant in amorphous LaAlO$_3$/SrTiO$_3$, where the higher density of point defects plays instead a major role.
We report on the transport characterization in dark and under light irradiation of three different interfaces: LaAlO3/SrTiO3, LaGaO3/SrTiO3, and the novel NdGaO3/SrTiO3 heterostructure. All of them share a perovskite structure, an insulating nature o f the single building blocks, a polar/non- polar character and a critical thickness of four unit cells for the onset of conductivity. The interface structure and charge confinement in NdGaO3/SrTiO3 are probed by atomic-scale- resolved electron energy loss spectroscopy showing that, similarly to LaAlO3/SrTiO3, extra electronic charge confined in a sheet of about 1.5 nm in thickness is present at the NdGaO3/SrTiO3 interface. Electric transport measurements performed in dark and under radiation show remarkable similarities and provide evidence that the persistent perturbation induced by light is an intrinsic peculiar property of the three investigated oxide-based polar/non-polar interfaces. Our work sets a framework for understanding the previous contrasting results found in literature about photoconductivity in LaAlO3/SrTiO3 and highlights the connection between the origin of persistent photoconductivity and the origin of conductivity itself. An improved understanding of the photo- induced metastable electron-hole pairs might allow to shed a direct light on the complex physics of this system and on the recently proposed perspectives of oxide interfaces for solar energy conversion.
Recent numerical studies have demonstrated the possibility of achieving substantial enhancements in the transmission of transverse-electric-polarized electromagnetic fields through subwavelength slits in a thin metallic screen by placing single or pa ired metallic cut-wire arrays at a close distance from the screen. In this Letter, we report on the first experimental evidence of such extraordinary transmission phenomena, via microwave (X/Ku-band) measurements on printed-circuit-board prototypes. Experimental results agree very well with full-wave numerical predictions, and indicate an intrinsic robustness of the enhanced transmission phenomena with respect to fabrication tolerances and experimental imperfections.
We present the key results from a comprehensive study of the refraction and focusing properties of a two-dimensional dodecagonal photonic ``quasicrystal (PQC), carried out via both full-wave numerical simulations and microwave measurements on a slab made of alumina rods inserted in a parallel-plate waveguide. We observe anomalous refraction and focusing in several frequency regions, confirming some recently published results. However, our interpretation, based on numerical and experimental evidence, differs substantially from the one in terms of ``effective negative refractive-index that was originally proposed. Instead, our study highlights the critical role played by short-range interactions associated with local order and symmetry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا