ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of local effects in anomalous refraction and focusing properties of dodecagonal photonic quasicrystals

110   0   0.0 ( 0 )
 نشر من قبل Emiliano Di Gennaro Dr.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the key results from a comprehensive study of the refraction and focusing properties of a two-dimensional dodecagonal photonic ``quasicrystal (PQC), carried out via both full-wave numerical simulations and microwave measurements on a slab made of alumina rods inserted in a parallel-plate waveguide. We observe anomalous refraction and focusing in several frequency regions, confirming some recently published results. However, our interpretation, based on numerical and experimental evidence, differs substantially from the one in terms of ``effective negative refractive-index that was originally proposed. Instead, our study highlights the critical role played by short-range interactions associated with local order and symmetry.

قيم البحث

اقرأ أيضاً

We present a study of the lensing properties of two-dimensional (2-D) photonic quasicrystal (PQC) slabs made of dielectric cylinders arranged according to a 12-fold-symmetric square-triangle aperiodic tiling. Our full-wave numerical analysis confirms the results recently emerged in the technical literature and, in particular, the possibility of achieving focusing effects within several frequency regions. However, contrary to the original interpretation, such focusing effects turn out to be critically associated to local symmetry points in the PQC slab, and strongly dependent on its thickness and termination. Nevertheless, our study reveals the presence of some peculiar properties, like the ability to focus the light even for slabs with a reduced lateral width, or beaming effects, which render PQC slabs potentially interesting and worth of deeper investigation. Key words: Photonic quasicrystals; negative refraction; superlensing.
A new type of long-range ordering in the absence of translational symmetry gives rise to drastic revolution of our common knowledge in condensed matter physics. Quasicrystal, as such unconventional system, became a plethora to test our insights and t o find exotic states of matter. In particular, electronic properties in quasicrystal have gotten lots of attention along with their experimental realization and controllability in twisted bilayer systems. In this work, we study how quasicrystalline order in bilayer systems can induce unique localization of electrons without any extrinsic disorders. We focus on dodecagonal quasicrystal that has been demonstrated in twisted bilayer graphene system in recent experiments. In the presence of small gap, we show the localization generically occurs due to non-periodic nature of quasicrystal, which is evidenced by the inverse participation ratio and the energy level statistics. We understand the origin of such localization by approximating the dodecagonal quasicrystals as an impurity scattering problem.
We report on the formation and development of the photonic band gap in two-dimensional 8-, 10- and 12-fold symmetry quasicrystalline lattices of low index contrast. Finite size structures made of dielectric cylindrical rods were studied and measured in the microwave region, and their properties compared with a conventional hexagonal crystal. Band gap characteristics were investigated by changing the direction of propagation of the incident beam inside the crystal. Various angles of incidence from 0 degree to 30degree were used in order to investigate the isotropic nature of the band gap. The arbitrarily high rotational symmetry of aperiodically ordered structures could be practically exploited to manufacture isotropic band gap materials, which are perfectly suitable for hosting waveguides or cavities.
Refraction at the interface between two materials is fundamental to the interaction of light with photonic devices and to the propagation of light through the atmosphere at large. Underpinning the traditional rules for the refraction of an optical fi eld is the tacit presumption of the separability of its spatial and temporal degrees-of-freedom. We show here that endowing a pulsed beam with precise spatio-temporal spectral correlations unveils remarkable refractory phenomena, such as group-velocity invariance with respect to the refractive index, group-delay cancellation, anomalous group-velocity increase in higher-index materials, and tunable group velocity by varying the angle of incidence. A law of refraction for `space-time wave packets encompassing these effects is verified experimentally in a variety of optical materials. Space-time refraction defies our expectations derived from Fermats principle and offers new opportunities for molding the flow of light and other wave phenomena.
Refraction and diffraction of waves in natural crystals and artificial crystals formed by anisotropically scattering centers are considered. A detailed study of the electromagnetic wave refraction in a two-dimensional photonic crystal formed by paral lel threads is given by way of example. The expression is derived for the effective amplitude of wave scattering by a thread (in a crystal) for the case when scattering by a single thread in a vacuum is anisotropic. It is established that for a wave with orthogonal polarization, unlike a wave with parallel polarization, the index of refraction in crystals built from metallic threads can be greater than unity, and Vavilov-Chrernkov radiation becomes possible in them. The set of equations describing the dynamical diffraction of waves in crystals is derived for the case when scattering by a single center in a vacuum is anisotropic. Because a most general approach is applied to the description of the scattering process, the results thus obtained are valid for a wide range of cases without being restricted to either electromagnetic waves or crystals built from threads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا