ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable intelligent surfaces (RISs) have recently received widespread attention in the field of wireless communication. An RIS can be controlled to reflect incident waves from the transmitter towards the receiver; a feature that is believed to fundamentally contribute to beyond 5G wireless technology. The typical RIS consists of entirely passive elements, which requires the high-dimensional channel estimation to be done elsewhere. Therefore, in this paper, we present a semi-passive large-scale RIS architecture equipped with only a small fraction of simplified receiver units with only 1-bit quantization. Based on this architecture, we first propose an alternating direction method of multipliers (ADMM)-based approach to recover the training signals at the passive RIS elements, We then obtain the global channel by combining a channel sparsification step with the generalized approximate message passing (GAMP) algorithm. Our proposed scheme exploits both the sparsity and low-rankness properties of the channel in the joint spatial-frequency domain of a wideband mmWave multiple-input-multiple-output (MIMO) communication system. Simulation results show that the proposed algorithm can significantly reduce the pilot signaling needed for accurate channel estimation and outperform previous methods, even with fewer receiver units.
In this paper, we investigate the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems with both spatial correlation and pilot contamination. We derive novel closed-form uplink and downlin k spectral efficiency (SE) expressions that take imperfect channel estimation into account. More specifically, we consider large-scale fading decoding and matched-filter receiver cooperation in the uplink. The uplink performance of a small-cell (SC) system is derived for comparison. The CF massive MIMO system achieves higher 95%-likely uplink SE than the SC system. In the downlink, the coherent transmission has four times higher 95%-likely per-user SE than the non-coherent transmission. Statistical channel cooperation power control (SCCPC) is used to mitigate the inter-user interference. SCCPC performs better than full power transmission, but the benefits are gradually weakened as the channel aging becomes stronger. Furthermore, strong spatial correlation reduces the SE but degrades the effect of channel aging. Increasing the number of antennas can improve the SE while decreasing the energy efficiency. Finally, we use the maximum normalized Doppler shift to design the SE-improved length of the resource block. Simulation results are presented to validate the accuracy of our expressions and prove that the CF massive MIMO system is more robust to channel aging than the SC system.
In this paper, we investigate the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems with pilot contamination. To take into account the channel aging effect due to user mobility, we firs t compute a channel estimate. We use it to derive novel closed-form expressions for the uplink spectral efficiency (SE) of CF massive MIMO systems with large-scale fading decoding and matched-filter receiver cooperation. The performance of a small-cell system is derived for comparison. It is found that CF massive MIMO systems achieve higher 95%-likely uplink SE in both low- and high-mobility conditions, and CF massive MIMO is more robust to channel aging. Fractional power control (FPC) is considered to compensate to limit the inter-user interference. The results show that, compared with full power transmission, the benefits of FPC are gradually weakened as the channel aging grows stronger.
Age of Information (AoI) is a newly appeared concept and metric to characterize the freshness of data. In this work, we study the delay and AoI in a multiple access channel (MAC) with two source nodes transmitting different types of data to a common destination. The first node is grid-connected and its data packets arrive in a bursty manner, and at each time slot it transmits one packet with some probability. Another energy harvesting (EH) sensor node generates a new status update with a certain probability whenever it is charged. We derive the delay of the grid-connected node and the AoI of the EH sensor as functions of different parameters in the system. The results show that the mutual interference has a non-trivial impact on the delay and age performance of the two nodes.
In this paper, we investigate the coexistence of two technologies that have been put forward for the fifth generation (5G) of cellular networks, namely, network-assisted device-to-device (D2D) communications and massive MIMO (multiple-input multiple- output). Potential benefits of both technologies are known individually, but the tradeoffs resulting from their coexistence have not been adequately addressed. To this end, we assume that D2D users reuse the downlink resources of cellular networks in an underlay fashion. In addition, multiple antennas at the BS are used in order to obtain precoding gains and simultaneously support multiple cellular users using multiuser or massive MIMO technique. Two metrics are considered, namely the average sum rate (ASR) and energy efficiency (EE). We derive tractable and directly computable expressions and study the tradeoffs between the ASR and EE as functions of the number of BS antennas, the number of cellular users and the density of D2D users within a given coverage area. Our results show that both the ASR and EE behave differently in scenarios with low and high density of D2D users, and that coexistence of underlay D2D communications and massive MIMO is mainly beneficial in low densities of D2D users.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا