ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the possibilities of assessing a non-zero $C_{7gamma}^prime$ from the direct and the indirect measurements of the photon polarization in the exclusive $b to sgamma^{(*)}$ decays. We focus on three methods and explore the following three de cay modes: $B to K^*(to K_Spi^0)gamma$, $B to K_1(to Kpipi)gamma$, and $B to K^*(to Kpi)ell^+ell^-$. By studying different New Physics scenarios we show that the future measurement of conveniently defined observables in these decays could provide us with the full determination of $C_{7gamma}$ and $C_{7gamma}^prime$.
65 - Sergey Barsuk , Jibo He , Emi Kou 2012
We propose to investigate various charmonium states using their common decay channel to p pbar at LHC. Having the branching ratios for charmonium decaying into the p pbar final state measured or calculated, we propose to measure the charmonium produc tion rate for both hadroproduction including soft-diffraction and inclusive production from b-hadron decays. We discuss the theoretical impacts in QCD of measuring different charmonium production rates and also the experimental prospects at LHCb, in particular, those for yet unmeasured eta_c and h_c.
We investigate the K1--> K pi pi strong interaction decays. Using the 3P0 quark-pair-creation model to derive the basic parametrization, we discuss in detail how to obtain the various partial wave amplitudes into the possible quasi-two-body decay cha nnels as well as their relative phases from the currently available experimental data. We obtain the K1 mixing angle to be thetaK1= 60 deg, in agreement with previous works. Our study can be applied to extract the information needed for the photon polarization determination of the radiative B--> K1 gamma decay.
Recently the radiative B decay to the strange axial-vector mesons, B --> K1(1270) gamma, has been observed with rather large branching ratio. This process is particularly interesting as the subsequent K1 decay into its three body final state allows u s to determine the polarization of the photon, which is mostly left- (right-)handed for Bbar (B) in the SM while various new physics models predict additional right- (left-)handed components. A new method is proposed to determine the polarization, exploiting the full Dalitz plot distribution, which seems to reduce significantly the statistical errors. This polarization measurement requires however a detailed knowledge of the K1--> K pi pi strong interaction decays, namely, the various partial wave amplitudes into the several possible quasi two-body channels, as well as their relative phases. The pattern of partial waves is especially complex for the K1(1270). We attempt to obtain the information through the combination of an experimental input and a theoretical one, provided by the 3P0 quark-pair-creation model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا