ترغب بنشر مسار تعليمي؟ اضغط هنا

Future prospects for the determination of the Wilson coefficient $C_{7gamma}^prime$

269   0   0.0 ( 0 )
 نشر من قبل Andrey Tayduganov
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the possibilities of assessing a non-zero $C_{7gamma}^prime$ from the direct and the indirect measurements of the photon polarization in the exclusive $b to sgamma^{(*)}$ decays. We focus on three methods and explore the following three decay modes: $B to K^*(to K_Spi^0)gamma$, $B to K_1(to Kpipi)gamma$, and $B to K^*(to Kpi)ell^+ell^-$. By studying different New Physics scenarios we show that the future measurement of conveniently defined observables in these decays could provide us with the full determination of $C_{7gamma}$ and $C_{7gamma}^prime$.



قيم البحث

اقرأ أيضاً

CoDEx is a Mathematica package that calculates the Wilson Coefficients (WCs) corresponding to effective operators up to mass dimension-6. Once the part of the Lagrangian involving single as well as multiple degenerate heavy fields, belonging to some Beyond Standard Model (BSM) theory, is given, the package can then integrate out propagators from the tree as well as 1-loop diagrams of that BSM theory. It then computes the associated WCs up to 1-loop level, for two different bases: Warsaw and SILH. CoDEx requires only very basic information about the heavy field(s), e.g., Colour, Isospin, Hyper-charge, Mass, and Spin. The package first calculates the WCs at the high scale (mass of the heavy field(s)). We then have an option to perform the renormalisation group evolutions (RGEs) of these operators in Warsaw basis, a complete one (unlike SILH), using the anomalous dimension matrix. Thus, one can get all effective operators at the electro-weak scale, generated from any such BSM theory, containing heavy fields of spin: 0, 1/2, and 1. We have provided many example models (both here and in the package-documentation) that more or less encompass different choices of heavy fields and interactions. Relying on the status of the present day precision data, we restrict ourselves up to dimension-6 effective operators. This will be generalised for any dimensional operators in a later version. Site: https://effexteam.github.io/CoDEx
We show that a top-prime quark as heavy as 600 GeV can be discovered at the Tevatron, provided it is resonantly pair-produced via a vector color octet. If the top-prime originates from a vectorlike quark, then the production of a single top-prime in association with a top may also be observable, even through its decay into a Higgs boson and a top. A color octet with mass of about 1 TeV, which decays into a top-prime pair, may account for the CDF excess of semileptonic (Wj)(Wj) events.
SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ul tra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0$ ubetabeta$) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low-energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0$ ubetabeta$ Phase I is foreseen for 2017.
A method to directly determine the Wilson coefficients for rare $bto s$ transitions using $B^0to K^{*0}mu^+mu^-$ decays in an unbinned maximum likelihood fit is presented. The method has several advantages compared to the conventional determination o f the Wilson coefficients from angular observables that are determined in bins of $q^2$, the square of the mass of the dimuon system. The method uses all experimental information in an optimal way and automatically accounts for experimental correlations. Performing pseudoexperiments, we show the improved sensitivity of the proposed method for the Wilson coefficients. We also demonstrate that it will be possible to use the method with the combined Run 1 and 2 data sample taken by the LHCb experiment.
The type-II see-saw mechanism based on the annexation of the Standard Model by weak gauge triplet scalar field proffers a natural explanation for the very minuteness of neutrino masses. Noting that the phenomenology for the non-degenerate triplet Hig gs spectrum is substantially contrasting than that for the degenerate one, we perform a comprehensive study for an extensive model parameter space parametrised by the triplet scalar vacuum expectation value (VEV), the mass-splitting between the triplet-like doubly and singly charged scalars and the mass of the doubly charged scalar. Considering all Drell-Yan production mechanisms for the triplet-like scalars and taking into account the all-encompassing complexity of their decays, we derive the most stringent 95% CL lower limits on the mass of the doubly charged scalar for a vast model parameter space by implementing already existing direct collider searches by CMS and ATLAS. These estimated limits are beyond those from the existing LHC searches by approximately 50-230 GeV. However, we also find that a specific region of the parameter space is not constrained by the LHC searches. Then, we forecast future limits by extending an ATLAS search at high-luminosity, and we propose a search strategy that yields improved limits for a part of the parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا