ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a new class of collider-type observables in conformal field theories which we call generalized event shapes. They are defined as matrix elements of light-ray operators that are sensitive to the longitudinal, or time-dependent, structure of the state produced in the collision. Generalized event shapes can be studied using both correlation functions and scattering amplitudes. They are infrared finite and smoothly transit over to the familiar event shapes. We compute them in planar ${cal N}=4$ super-Yang-Mills theory at weak and strong coupling, and study their physical properties. We show that at strong coupling both the stringy and quantum-gravitational corrections to the energy-energy correlation exhibit longitudinal broadening that manifests itself through the presence of long-time tails in the energy flux measured by the detectors.
We develop further an approach to computing energy-energy correlations (EEC) directly from finite correlation functions. In this way, one completely avoids infrared divergences. In maximally supersymmetric Yang-Mills theory ($mathcal{N}=4$ sYM), we d erive a new, extremely simple formula relating the EEC to a triple discontinuity of a four-point correlation function. We use this formula to compute the EEC in $mathcal{N}=4$ sYM at next-to-next-to-leading order in perturbation theory. Our result is given by a two-fold integral representation that is straightforwardly evaluated numerically. We find that some of the integration kernels are equivalent to those appearing in sunrise Feynman integrals, which evaluate to elliptic functions. Finally, we use the new formula to provide the expansion of the EEC in the back-to-back and collinear limits.
We initiate a systematic study of the consequences of (super)conformal symmetry of massless scattering amplitudes. The classical symmetry is potentially broken at the quantum level by infrared and ultraviolet effects. We study its manifestations on t he finite hard part of the scattering process. The conformal Ward identities in momentum space are second-order differential equations, difficult to analyze. We prefer to study superconformal symmetry whose generators are first-order in the momenta. Working in a massless N=1 supersymmetric Wess-Zumino model, we derive on-shell superconformal Ward identities. They contain an anomaly due to collinear regions of loop momenta. It is given by an integral with one loop less than the original graph, with an extra integral over a collinear splitting parameter. We discuss the relation to the holomorphic anomaly that was previously studied in tree-level amplitudes and at the level of unitarity cuts. We derive and solve Ward identities for various scattering processes in the model. We classify the on-shell superamplitudes according to their Grassmann degree, in close analogy with the helicity classification of gluon amplitudes. We focus on MHV-like and NMHV-like amplitudes with up to six external particles, at one and two loops. Interestingly, the superconformal generator acting on the bosonic part of the amplitudes is Wittens twistor collinearity operator. We find that the first-order differential equations, together with physically motivated boundary conditions, uniquely fix the answer. All the cases considered give rise to uniform weight functions. Our most interesting example is a five-point non-planar hexa-box integral with an off-shell leg. It gives first indications on the function space needed for Higgs plus two jet production at next-to-next-to leading order.
Recently, Bern et al observed that a certain class of next-to-planar Feynman integrals possess a bonus symmetry that is closely related to dual conformal symmetry. It corresponds to a projection of the latter along a certain lightlike direction. Prev ious studies were performed at the level of the loop integrand, and a Ward identity for the integral was formulated. We investigate the implications of the symmetry at the level of the integrated quantities. In particular, we focus on the phenomenologically important case of five-particle scattering. The symmetry simplifies the four-variable problem to a three-variable one. In the context of the recently proposed space of pentagon functions, the symmetry is much stronger. We find that it drastically reduces the allowed function space, leading to a well-known space of three-variable functions. Furthermore, we show how to use the symmetry in the presence of infrared divergences, where one obtains an anomalous Ward identity. We verify that the Ward identity is satisfied by the leading and subleading poles of several nontrivial five-particle integrals. Finally, we present examples of integrals that possess both ordinary and dual conformal symmetry.
We consider finite superamplitudes of N=1 matter, and use superconformal symmetry to derive powerful first-order differential equations for them. Due to on-shell collinear singularities, the Ward identities have an anomaly, which is obtained from low er-loop information. We show that in the five-particle case, the solution to the equations is uniquely fixed by the expected analytic behavior. We apply the method to a non-planar two-loop five-particle integral.
We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurati ons of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an $ell-$loop integral is a 2nd-order differential equation whose right-hand side is an $(ell-1)-$loop integral. We show several examples, in particular the four-dimensional scalar double box.
We construct the most general composite operators of N = 4 SYM in Lorentz harmonic chiral ($approx$ twistor) superspace. The operators are built from the SYM supercurvature which is nonpolynomial in the chiral gauge prepotentials. We reconstruct the full nonchiral dependence of the supercurvature. We compute all tree-level MHV form factors via the LSZ redcution procedure with on-shell states made of the same supercurvature.
We explain some details of the construction of composite operators in N=4 SYM that we have elaborated earlier in the context of Lorentz harmonic chiral (LHC) superspace. We give a step-by-step elementary derivation and show that the result coincides with the recent hypothesis put forward in arXiv:1603.04471 within the twistor approach. We provide the appropriate LHC-to-twistors dictionary.
We study the multipoint super-correlation functions of the full non-chiral stress-tensor multiplet in N=4 super-Yang-Mills theory in the Born approximation. We derive effective supergraph Feynman rules for them. Surprisingly, the Feynman rules for th e non-chiral correlators are obtained from those for the chiral correlators by a simple Grassmann shift of the space-time variables. We rely on the formulation of the theory in Lorentz harmonic chiral (LHC) superspace elaborated in the twin paper arXiv:1601.06803. In this approach only the chiral half of the supersymmetry is manifest. The other half is realized by nonlinear and nonlocal transformations of the LHC superfields. However, at Born level only the simple linear part of the transformations is relevant. It corresponds to effectively working in the self-dual sector of the theory. Our method is also applicable to a wider class of supermultiplets like all the half-BPS operators and the Konishi multiplet.
We present a formulation of the maximally supersymmetric N=4 gauge theory in Lorentz harmonic chiral (LHC) superspace. It is closely related to the twistor formulation of the theory but employs the simpler notion of Lorentz harmonic variables. They p arametrize a two-sphere and allow us to handle efficiently infinite towers of higher-spin auxiliary fields defined on ordinary space-time. In this approach the chiral half of N=4 supersymmetry is manifest. The other half is realized non-linearly and the algebra closes on shell. We give a straightforward derivation of the Feynman rules in coordinate space. We show that the LHC formulation of the N=4 super-Yang-Mills theory is remarkably similar to the harmonic superspace formulation of the N=2 gauge and hypermultiplet matter theories. In the twin paper arXiv:1601.06804 we apply the LHC formalism to the study of the non-chiral multipoint correlation functions of the N=4 stress-tensor supermultiplet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا