ﻻ يوجد ملخص باللغة العربية
We construct the most general composite operators of N = 4 SYM in Lorentz harmonic chiral ($approx$ twistor) superspace. The operators are built from the SYM supercurvature which is nonpolynomial in the chiral gauge prepotentials. We reconstruct the full nonchiral dependence of the supercurvature. We compute all tree-level MHV form factors via the LSZ redcution procedure with on-shell states made of the same supercurvature.
In this paper we study the form factors for the half-BPS operators $mathcal{O}^{(n)}_I$ and the $mathcal{N}=4$ stress tensor supermultiplet current $W^{AB}$ up to the second order of perturbation theory and for the Konishi operator $mathcal{K}$ at fi
Soft theorems for the form factors of 1/2-BPS and Konishi operator supermultiplets are derived at tree level in N=4 SYM theory. They have a form identical to the one in the amplitude case. For MHV sectors of stress tensor and Konishi supermultiplets
We consider tree level form factors of operators from stress tensor operator supermultiplet with light-like operator momentum $q^2=0$. We present a conjecture for the Grassmannian integral representation both for these tree level form factors as well
In this paper we develop a supersymmetric version of unitarity cut method for form factors of operators from the chiral truncation of the the $mathcal{N}=4$ stress-tensor current supermultiplet $T^{AB}$. The relation between the superform factor with
We propose a mechanism for calculating anomalous dimensions of higher-spin twist-two operators in N=4 SYM. We consider the ratio of the two-point functions of the operators and of their superconformal descendants or, alternatively, of the three-point