ترغب بنشر مسار تعليمي؟ اضغط هنا

Considering marginally relevant and relevant deformations of the weakly coupled $(3+1)$-dimensional large $N$ conformal gauge theories introduced in arXiv:2011.13981, we study the patterns of phase transitions in these systems that lead to a symmetry -broken phase in the high temperature limit. These deformations involve only the scalar fields in the models. The marginally relevant deformations are obtained by varying certain double trace quartic couplings between the scalar fields. The relevant deformations, on the other hand, are obtained by adding masses to the scalar fields while keeping all the couplings frozen at their fixed point values. At the $Nrightarrowinfty$ limit, the RG flows triggered by these deformations approach the aforementioned weakly coupled CFTs in the UV regime. These UV fixed points lie on a conformal manifold with the shape of a circle in the space of couplings. In certain parameter regimes a subset of points on this manifold exhibits thermal order characterized by the spontaneous breaking of a global $mathbb Z_2$ or $U(1)$ symmetry and Higgsing of a subset of gauge bosons at all nonzero temperatures. We show that the RG flows triggered by the marginally relevant deformations lead to a weakly coupled IR fixed point which lacks the thermal order. Thus, the systems defined by these RG flows undergo a transition from a disordered phase at low temperatures to an ordered phase at high temperatures. This provides examples of both inverse symmetry breaking and symmetry nonrestoration. For the relevant deformations, we demonstrate that a variety of phase transitions are possible depending on the signs and magnitudes of the masses (squared) added to the scalar fields. Using thermal perturbation theory, we derive the approximate values of the critical temperatures for all these phase transitions. All the results are obtained at the $Nrightarrowinfty$ limit.
In this work we explore the possibility of spontaneous breaking of global symmetries at all nonzero temperatures for conformal field theories (CFTs) in $D = 4$ space-time dimensions. We show that such a symmetry-breaking indeed occurs in certain fami lies of non-supersymmetric large $N$ gauge theories at a planar limit. We also show that this phenomenon is accompanied by the system remaining in a persistent Brout-Englert-Higgs (BEH) phase at any temperature. These analyses are motivated by the work done in arXiv:2005.03676 where symmetry-breaking was observed in all thermal states for certain CFTs in fractional dimensions. In our case, the theories demonstrating the above features have gauge groups which are specific products of $SO(N)$ in one family and $SU(N)$ in the other. Working in a perturbative regime at the $Nrightarrowinfty$ limit, we show that the beta functions in these theories yield circles of fixed points in the space of couplings. We explicitly check this structure up to two loops and then present a proof of its survival under all loop corrections. We show that under certain conditions, an interval on this circle of fixed points demonstrates both the spontaneous breaking of a global symmetry as well as a persistent BEH phase at all nonzero temperatures. The broken global symmetry is $mathbb{Z}_2$ in one family of theories and $U(1)$ in the other. The corresponding order parameters are expectation values of the determinants of bifundamental scalar fields in these theories. We characterize these symmetries as baryon-like symmetries in the respective models.
We study finite $N$ aspects of the $O(m)times O(N-m)$ vector model with quartic interactions in general $2leq d leq 6$ spacetime dimensions. This model has recently been shown to display the phenomenon of persistent symmetry breaking at a perturbativ e Wilson-Fisher-like fixed point in $d=4-epsilon$ dimensions. The large rank limit of the bi-conical model displays a conformal manifold and a moduli space of vacua. We find a set of three double trace scalar operators that are respectively irrelevant, relevant and marginal deformations of the conformal manifold in general $d$. We calculate the anomalous dimensions of the single and multi-trace scalar operators to the first sub-leading order in the large rank expansion. The anomalous dimension of the marginal operator does not vanish in general, indicating that the conformal manifold is lifted at finite $N$. In the case of equal ranks we are able to derive explicitly the scaling dimensions of various operators as functions of only $d$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا