ترغب بنشر مسار تعليمي؟ اضغط هنا

We present photometric study of NY Ser, an in-the-gap SU UMa-type nova, in 2002 and 2013. We determined the duration of the superoutburst and the mean superhump period to be 18 d and 0.10458 d, respectively. We detected in 2013 that NY Ser showed two distinct states separated by the superoutburst. A state of rather infrequent normal outbursts lasted at least 44 d before the superoutburst and a state of frequent outbursts started immediately after the superoutburst and lasted at least for 34 d. Unlike a typical SU UMa star with bimodal distribution of the outbursts duration, NY Ser displayed a diversity of normal outbursts. In the state of infrequent outbursts, we detected a wide ~12 d outburst accompanied by 0.098 d orbital modulation but without superhumps ever established in NY Ser. We classified this as the wide normal outburst. The orbital period dominated both in quiescence and during normal outbursts in this state. In the state of the most frequent normal outbursts, the 0.10465 d positive superhumps dominated and co-existed with the orbital modulation. In 2002 we detected the normal outburst of intermediate 5-6 d duration that was also accompanied by orbital modulations.
We report on a discovery of negative superhumps during the 2011 January superoutburst of ER UMa. During the superoutburst which started on 2011 January 16, we detected negative superhumps having a period of 0.062242(9) d, shorter than the orbital per iod by 2.2%. No evidence of positive superhumps was detected during this observation. This finding indicates that the disk exhibited retrograde precession during this superoutburst, contrary to all other known cases of superoutbursts. The duration of this superoutburst was shorter than those of ordinary superoutbursts and the intervals of normal outbursts were longer than ordinary ones. We suggest a possibility that such unusual outburst properties are likely a result of the disk tilt, which is supposed to be a cause of negative superhumps: the tilted disk could prevent the disk from being filled with materials in the outmost region which is supposed to be responsible for long-duration superoutbursts in ER UMa-type dwarf novae. The discovery signifies the importance of the classical prograde precession in sustaining long-duration superoutbursts. Furthermore, the presence of pronounced negative superhumps in this system with a high mass-transfer rate favors the hypothesis that hydrodynamical lift is the cause of the disk tilt.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا