ترغب بنشر مسار تعليمي؟ اضغط هنا

NY Serpentis: SU UMa-Type Nova in the Period Gap with Diversity of Normal Outbursts

256   0   0.0 ( 0 )
 نشر من قبل Elena Pavlenko P
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometric study of NY Ser, an in-the-gap SU UMa-type nova, in 2002 and 2013. We determined the duration of the superoutburst and the mean superhump period to be 18 d and 0.10458 d, respectively. We detected in 2013 that NY Ser showed two distinct states separated by the superoutburst. A state of rather infrequent normal outbursts lasted at least 44 d before the superoutburst and a state of frequent outbursts started immediately after the superoutburst and lasted at least for 34 d. Unlike a typical SU UMa star with bimodal distribution of the outbursts duration, NY Ser displayed a diversity of normal outbursts. In the state of infrequent outbursts, we detected a wide ~12 d outburst accompanied by 0.098 d orbital modulation but without superhumps ever established in NY Ser. We classified this as the wide normal outburst. The orbital period dominated both in quiescence and during normal outbursts in this state. In the state of the most frequent normal outbursts, the 0.10465 d positive superhumps dominated and co-existed with the orbital modulation. In 2002 we detected the normal outburst of intermediate 5-6 d duration that was also accompanied by orbital modulations.



قيم البحث

اقرأ أيضاً

We found that the SU UMa-type dwarf nova NY Ser in the period gap [orbital period 0.097558(6) d] showed standstills twice in 2018. This is the first clear demonstration of a standstill occurring between superoutbursts of an SU UMa-type dwarf nova. Th ere was no sign of superhumps during the standstill, and at least one superoutburst directly started from the standstill. This provides strong evidence that the 3:1 resonance was excited during standstills. This phenomenon indicates that the disk radius can grow during standstills. We also interpret that the condition close to the limit of the tidal instability caused early quenching of superoutbursts, which resulted substantial amount of matter left in the disk after the superoutburst. We interpret that the substantial matter in the disk in condition close to the limit of the tidal instability is responsible for standstills (as in the high mass-transfer system NY Ser) or multiple rebrightenings (as in the low mass-transfer system V1006 Cyg).
We observed the 2016 outburst of OT J002656.6+284933 (CSS101212:002657+284933) and found that it has the longest recorded [0.13225(1) d in average] superhumps among SU UMa-type dwarf novae. The object is the third known SU UMa-type dwarf nova above t he period gap. The outburst, however, was unlike ordinary long-period SU UMa-type dwarf novae in that it showed two post-outburst rebrightenings. It showed superhump evolution similar to short-period SU UMa-type dwarf novae. We could constrain the mass ratio to less than 0.15 (most likely between 0.10 and 0.15) by using superhump periods in the early and post-superoutburst stages. These results suggest the possibility that OT J002656.6+284933 has an anomalously undermassive secondary and it should have passed a different evolutionary track from the standard one.
We report results of an extensive world-wide observing campaign devoted to the recently discovered dwarf nova SDSS J162520.29+120308.7 (SDSS J1625). The data were obtained during the July 2010 eruption of the star and in August and September 2010 whe n the object was in quiescence. During the July 2010 superoutburst SDSS J1625 clearly displayed superhumps with a mean period of $P_{rm sh}=0.095942(17)$ days ($138.16 pm 0.02$ min) and a maximum amplitude reaching almost 0.4 mag. The superhump period was not stable, decreasing very rapidly at a rate of $dot P = -1.63(14)cdot 10^{-3}$ at the beginning of the superoutburst and increasing at a rate of $dot P = 2.81(20)cdot 10^{-4}$ in the middle phase. At the end of the superoutburst it stabilized around the value of $P_{rm sh}=0.09531(5)$ day. During the first twelve hours of the superoutburst a low-amplitude double wave modulation was observed whose properties are almost identical to early superhumps observed in WZ Sge stars. The period of early superhumps, the period of modulations observed temporarily in quiescence and the period derived from radial velocity variations are the same within measurement errors, allowing us to estimate the most probable orbital period of the binary to be $P_{rm orb}=0.09111(15)$ days ($131.20 pm 0.22$ min). This value clearly indicates that SDSS J1625 is another dwarf nova in the period gap. Knowledge of the orbital and superhump periods allows us to estimate the mass ratio of the system to be $qapprox 0.25$. This high value poses serious problems both for the thermal and tidal instability (TTI) model describing the behaviour of dwarf novae and for some models explaining the origin of early superhumps.
134 - Taichi Kato 2014
We studied the background dwarf nova of KIC 11412044 in the Kepler public data and identified it with GALEX J194419.33+491257.0. This object turned out to be a very active SU UMa-type dwarf nova having a mean supercycle of about 150 d and frequent no rmal outbursts having intervals of 4-10 d. The object showed strong persistent signal of the orbital variation with a period of 0.0528164(4) d (76.06 min) and superhumps with a typical period of 0.0548 d during superoutbursts. Most of the superoutbursts were accompanied by a precursor outburst. All these features are unusual for this very short orbital period. We succeeded in detecting the evolving stage of superhumps (stage A superhumps) and obtained a mass ratio of 0.141(2), which is unusually high for this orbital period. We suggest that the unusual outburst properties are a result of this high mass ratio. We suspect that this object is a member of the recently recognized class of cataclysmic variables (CVs) with a stripped core evolved secondary which are evolving toward AM CVn-type CVs. The present determination of the mass ratio using stage A superhumps makes the first case in such systems.
We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of superhump period are found to be composed of three distinct stages: early evol utionary stage with a longer superhump period, middle stage with systematically varying periods, final stage with a shorter, stable superhump period. During the middle stage, many systems with superhump periods less than 0.08 d show positive period derivatives. Contrary to the earlier claim, we found no clear evidence for variation of period derivatives between superoutburst of the same object. We present an interpretation that the lengthening of the superhump period is a result of outward propagation of the eccentricity wave and is limited by the radius near the tidal truncation. We interpret that late stage superhumps are rejuvenized excitation of 3:1 resonance when the superhumps in the outer disk is effectively quenched. Many of WZ Sge-type dwarf novae showed long-enduring superhumps during the post-superoutburst stage having periods longer than those during the main superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to be strongly correlated with the fractional superhump excess, or consequently, mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with multiple rebrightenings tend to have smaller period derivatives and are excellent candidate for the systems around or after the period minimum of evolution of cataclysmic variables (abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا