ترغب بنشر مسار تعليمي؟ اضغط هنا

63 - Tomasz Kaminski 2015
We present optical and infrared spectroscopy of V1309 Sco, an object that erupted in 2008 in a stellar-merger event. During the outburst, V1309 Sco displayed characteristics typical of red transients, a class of objects similar to V838 Mon. Our obser vations were obtained in 2009 and 2012, i.e. months and years after the eruption of V1309 Sco, and illustrate severe changes in the remnant, mainly in its circumstellar surroundings. In addition to atomic gas observed in earlier epochs, we identified molecular bands of TiO, VO, H$_2$O, ScO, AlO, and CrO. The infrared bands of CrO we analyse are the first astronomical identification of the features. Over the whole period covered by our data, the remnant was associated with a cool ($lesssim$1000 K) outflow with a terminal velocity of about 200 km/s. Signatures of warmer atomic gas, likely to be still dissipating the energy of the 2008 outburst, dramatically decreased their brightness between 2009 and 2012. In addition, the source of optical continuum disappeared sometime before 2012, likely owing to the formation of new dust. The final stage of V1309 Scos evolution captured by our spectra is an object remarkably similar to an older red transient, V4332 Sgr. In addition to providing a detailed view on the settling of the eruptive object, the observations presented here reinforce the conclusion that all the Galactic red transients are a manifestation of the same phenomenon, i.e. a stellar merger. The late spectra of V1309 Sco also suggest peculiarities in the chemical composition of the remnant, which still need to be explored.
We present optical and NIR spectroscopic observations of U Sco 2010 outburst. From the analysis of lines profiles we identify a broad and a narrow component and show that the latter originates from the reforming accretion disk. We show that the accre tion resumes shortly after the outburst, on day +8, roughly when the super-soft (SSS) X-ray phase starts. Consequently U Sco SSS phase is fueled (in part or fully) by accretion and should not be used to estimate $m_{mathrm{rem}}$, the mass of accreted material which has not been ejected during the outburst. In addition, most of the He emission lines, and the HeII lies in particular, form in the accretion flow/disk within the binary and are optically thick, thus preventing an accurate abundance determination. A late spectrum taken in quiescence and during eclipse shows CaII H&K, the G-band and MgI b absorption from the secondary star. However, no other significant secondary star features have been observed at longer wavelengths and in the NIR band.
A 321.5 s modulation was discovered in 1999 in the X-ray light curve of HM Cnc. In 2001 and 2002, optical photometric and spectroscopic observations revealed that HM Cnc is a very blue object with no intrinsic absorptions but broad (FWHM 1500 km s^-1 ) low equivalent width emission lines (EW 1-6A), which were first identified with the HeII Pickering series. The combination of X-ray and optical observations pictures HM Cnc as a double degenerate binary hosting two white dwarfs, and possibly being the shortest orbital period binary discovered so far. The present work is aimed at studying the orbital motion of the two components by following the variations of the shape, centroid and intensity of the emission lines through the orbit. In February 2007, we carried out the first phase resolved optical spectroscopic study with the VLT/FORS2 in the High Time Resolution (HIT) mode, yielding five phase bins in the 321 s modulation. Despite the low SNR, the data show that the intensity of the three most prominent emission lines, already detected in 2001, varies with the phase. These lines are detected at phases 0.2-0.6 where the optical emission peaks, and marginally detected or not detected at all elsewhere. Moreover, the FWHM of the emission lines in the phase resolved spectra is smaller, by almost a factor 2, than that in the the phase-averaged 2001 spectrum. Our results are consistent with both the pulsed optical component and emission lines originating in the same region which we identify with the irradiated surface of the secondary. Moreover, regardless of the origin of the un-pulsed optical continuum, we note that the EWs of the emission lines might be up to -15 / -25A, larger than thought before; these values are more similar to those detected in cataclysmic variables. All the findings further confirm that the 321s modulation observed in HM Cnc is the orbital period of the system, the shortest known to date.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا