ترغب بنشر مسار تعليمي؟ اضغط هنا

Post-outburst spectra of a stellar-merger remnant of V1309 Scorpii: from a twin of V838 Monocerotis to a clone of V4332 Sagittarii

102   0   0.0 ( 0 )
 نشر من قبل Tomasz Kami\\'nski Dr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tomasz Kaminski




اسأل ChatGPT حول البحث

We present optical and infrared spectroscopy of V1309 Sco, an object that erupted in 2008 in a stellar-merger event. During the outburst, V1309 Sco displayed characteristics typical of red transients, a class of objects similar to V838 Mon. Our observations were obtained in 2009 and 2012, i.e. months and years after the eruption of V1309 Sco, and illustrate severe changes in the remnant, mainly in its circumstellar surroundings. In addition to atomic gas observed in earlier epochs, we identified molecular bands of TiO, VO, H$_2$O, ScO, AlO, and CrO. The infrared bands of CrO we analyse are the first astronomical identification of the features. Over the whole period covered by our data, the remnant was associated with a cool ($lesssim$1000 K) outflow with a terminal velocity of about 200 km/s. Signatures of warmer atomic gas, likely to be still dissipating the energy of the 2008 outburst, dramatically decreased their brightness between 2009 and 2012. In addition, the source of optical continuum disappeared sometime before 2012, likely owing to the formation of new dust. The final stage of V1309 Scos evolution captured by our spectra is an object remarkably similar to an older red transient, V4332 Sgr. In addition to providing a detailed view on the settling of the eruptive object, the observations presented here reinforce the conclusion that all the Galactic red transients are a manifestation of the same phenomenon, i.e. a stellar merger. The late spectra of V1309 Sco also suggest peculiarities in the chemical composition of the remnant, which still need to be explored.



قيم البحث

اقرأ أيضاً

V838 Mon erupted in 2002 quickly becoming the prototype of a new type of stellar eruptions known today as (luminous) red novae. The red nova outbursts are thought to be caused by stellar mergers. The merger in V838 Mon took place in a triple or highe r system involving two B-type stars. We mapped the merger site with ALMA at a resolution of 25 mas in continuum dust emission and in rotational lines of simple molecules, including CO, SiO, SO, SO$_2$, AlOH, and H$_2$S. We use radiative transfer calculations to reproduce the remnants architecture at the epoch of the ALMA observations. For the first time, we identify the position of the B-type companion relative to the outbursting component of V838 Mon. The stellar remnant is surrounded by a clumpy wind with characteristics similar to winds of red supergiants. The merger product is also associated with an elongated structure, $17.6 times 7.6$ mas, seen in continuum emission, and which we interpret as a disk seen at a moderate inclination. Maps of continuum and molecular emission show also a complex region of interaction between the B-type star (its gravity, radiation, and wind) and the flow of matter ejected in 2002. The remnants molecular mass is about 0.1 M$_{odot}$ and the dust mass is 8.3$cdot$10$^{-3}$ M$_{odot}$. The mass of the atomic component remains unconstrained. The most interesting region for understanding the merger of V838 Mon remains unresolved but appears elongated. To study it further in more detail will require even higher angular resolutions. ALMA maps show us an extreme form of interaction between the merger ejecta with a distant (250 au) companion. This interaction is similar to that known from the Antares AB system but at a much higher mass loss rate. The B-type star not only deflects the merger ejecta but also changes its chemical composition with an involvement of circumstellar shocks.
Aims. V838 Monocerotis erupted in 2002, brightened in a series of outbursts, and eventually developed a spectacular light echo. A very red star emerged a few months after the outburst. The whole event has been interpreted as the result of a merger. M ethods. We obtained near-IR and mid-IR interferometric observations of V838 Mon with the AMBER and MIDI recombiners located at the Very Large Telescope Interferometer (VLTI) array. The MIDI two-beam observations were obtained with the 8m Unit Telescopes between October 2011 and February 2012. The AMBER three-beam observations were obtained with the compact array (B$leq$m) in April 2013 and the long array (B$leq$140m) in May 2014, using the 1.8m Auxiliary Telescopes. Results. A significant new result is the detection of a compact structure around V838 Mon, as seen from MIDI data. The extension of the structure increases from a FWHM of 25 mas at 8 {mu}m to 70 mas at 13 {mu}m. At the adopted distance of D = 6.1 $pm$ 0.6 kpc, the dust is distributed from about 150 to 400 AU around V838 Mon. The MIDI visibilities reveal a flattened structure whose aspect ratio increases with wavelength. The major axis is roughly oriented around a position angle of -10 degrees, which aligns with previous polarimetric studies reported in the literature. This flattening can be interpreted as a relic of the 2002 eruption or by the influence of the currently embedded B3V companion. The AMBER data provide a new diameter for the pseudo-photosphere, which shows that its diameter has decreased by about 40% in 10yrs, reaching a radius R$_*$ = 750 $pm$ 200 R$_{odot}$ (3.5 $pm$ 1.0 AU). Conclusions. After the 2002 eruption, interpreted as the merging of two stars, it seems that the resulting source is relaxing to a normal state. The nearby environment exhibits an equatorial over-density of dust up to several hundreds of AU.
An eruptive nova-like event took place in 1994 in the stellar-merger candidate V4332 Sgr. Following the eruption, dust consisting of refractory silicate rich dust grains containing a significant component of AlO bonding was formed sometime between 19 98 and 2003. Observations using Spitzer between 2005 and 2009 show significant changes in the 10 micron silicate stretch feature. There is a deepening of the 10 micron silicate stretch as well as the development of a feature between about 13 and 20 microns consistent with a blend of the MgO and FeO stretching features and the O-Si-O bending mode of increasingly ordered silicate dust. Near-infrared observations show the presence of AlO and water vapor in the outflow in 2003, 2004 and 2005: the AlO has significantly decreased in spectra obtained in 2014 while the water vapor remains largely unchanged. An attempt is made to correlate these observations and understand the significance of these changes using DUSTY modeling. The observations appear consistent with the kinetically-controlled, condensation of highly under-oxidized SiO/AlO/Fe/Mg dust grains in the outflow followed by the continuous evolution of the initial condensate due to thermal annealing and oxidation of the dust via reaction with ambient O, OH and H2O in the expanding, cooling shell. Periodic monitoring of this dust shell over the mid-infrared spectral range could yield useful information on the evolution of under-oxidized silicate condensates exposed to hot water vapor in more conventional circumstellar environments.
The eruptive variable V838 Monocerotis gained notoriety in 2002 when it brightened nine magnitudes in a series of three outbursts and then rapidly evolved into an extremely cool supergiant. We present optical, near-IR, and mid-IR spectroscopic and ph otometric observations of V838 Monocerotis obtained between 2008 and 2012 at the Apache Point Observatory 3.5m, NASA IRTF 3m, and Gemini South 8m telescopes. We contemporaneously analyze the optical & IR spectroscopic properties of V838 Monocerotis to arrive at a revised spectral type L3 supergiant and effective temperature Teff~2000--2200 K. Because there are no existing optical observational data for L supergiants in the optical, we speculate that V838 Monocerotis may represent the prototype for L supergiants in this wavelength regime. We find a low level of Halpha emission present in the system, consistent with interaction between V838 Monocerotis and its B3V binary; however, we cannot rule out a stellar collision as the genesis event, which could result in the observed Halpha activity. Based upon a two-component blackbody fit to all wavelengths of our data, we conclude that, as of 2009, a shell of ejecta surrounded V838 Monocerotis at a radius of R=263+/-10 AU with a temperature of T=285+/-2 K. This result is consistent with IR interferometric observations from the same era and predictions from the Lynch et al. model of the expanding system, which provides a simple framework for understanding this complicated system.
Luminous Red Variables (LRVs) are most likely eruptions that are the outcome of stellar mergers. V838 Mon is one of the best-studied members of this class, representing an archetype for stellar mergers resulting from B-type stars. As result of the me rger event, nova-like eruptions occur driving mass-loss from the system. As the gas cools considerable circumstellar dust is formed. V838 Mon erupted in 2002 and is undergoing very dynamic changes in its dust composition, geometry, and infrared luminosity providing a real-time laboratory to validate mineralogical condensation sequences in stellar mergers and evolutionary scenarios. We discuss recent NASA Stratospheric Observatory for Infrared Astronomy SOFIA 5 to 38 micron observations combined with archival NASA Spitzer spectra that document the temporal evolution of the freshly formed (within the last 20 yrs) circumstellar material in the environs of V838 Mon. Changes in the 10 micron spectral region are strong evidence that we are witnessing a classical dust condensation sequence expected to occur in oxygen-rich environments where alumina formation is followed by that of silicates at the temperature cools.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا