ترغب بنشر مسار تعليمي؟ اضغط هنا

The suppression of the nuclear modification factor for heavy flavor hadrons is usually attributed to the energy loss of heavy quarks propagating in a QCD plasma. Nevertheless it is puzzling that the suppression is as strong as for light flavors. We s how that when accounting for the quark momentum shift associated to the opening of the recombination/coalescence channel for hadron production in the plasma, it is not necessary to invoke such strong energy loss. This shift is expressed in terms of an increase of the heavy baryon to meson ratio in nuclear with respect to proton collisions. When this mechanism is included along with a moderate energy loss, data from RHIC and LHC for the nuclear modification factor of electrons coming from heavy flavor decays as well as of charm mesons, can be reasonably described.
211 - Alejandro Ayala 2009
The spin alignment matrix element rho_{00} for the vector mesons K^{*0} and phi(1020) has been measured in RHIC at central rapidities. These measurements are consistent with the absence of polarization with respect to the reaction plane in mid-centra l Au + Au collisions whereas, when measured with respect to the production plane in the same reactions and in p + p collisions, a non-vanishing and p_perp-dependent rho_{00} is found. We show that this behavior can be understood in a simple model of vector meson production where the spin of their constituent quarks is oriented during hadronization as the result of Thomas precession.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا