ترغب بنشر مسار تعليمي؟ اضغط هنا

We present four infinite families of mutually commuting difference operators which include the deformed elliptic Ruijsenaars operators. The trigonometric limit of this kind of operators was previously introduced by Feigin and Silantyev. They provide a quantum mechanical description of two kinds of relativistic quantum mechanical particles which can be identified with particles and anti-particles in an underlying quantum field theory. We give direct proofs of the commutativity of our operators and of some other fundamental properties such as kernel function identities. In particular, we give a rigorous proof of the quantum integrability of the deformed Ruijsenaars model.
We present a perturbative construction of two kinds of eigenfunctions of the commuting family of difference operators defining the elliptic Ruijsenaars system. The first kind corresponds to elliptic deformations of the Macdonald polynomials, and the second kind generalizes asymptotically free eigenfunctions previously constructed in the trigonometric case. We obtain these eigenfunctions as infinite series which, as we show, converge in suitable domains of the variables and parameters. Our results imply that, for the domain where the elliptic Ruijsenaars operators define a relativistic quantum mechanical system, the elliptic deformations of the Macdonald polynomials provide a family of orthogonal functions with respect to the pertinent scalar product.
For any variable number, a non-stationary Ruijsenaars function was recently introduced as a natural generalization of an explicitly known asymptotically free solution of the trigonometric Ruijsenaars model, and it was conjectured that this non-statio nary Ruijsenaars function provides an explicit solution of the elliptic Ruijsenaars model. We present alternative series representations of the non-stationary Ruijsenaars functions, and we prove that these series converge. We also introduce novel difference operators called ${mathcal T}$ which, as we prove in the trigonometric limit and conjecture in the general case, act diagonally on the non-stationary Ruijsenaars functions.
We present a non-chiral version of the Intermediate Long Wave (ILW) equation that can model nonlinear waves propagating on two opposite edges of a quantum Hall system, taking into account inter-edge interactions. We obtain exact soliton solutions gov erned by the hyperbolic Calogero-Moser-Sutherland (CMS) model, and we give a Lax pair, a Hirota form, and conservation laws for this new equation. We also present a periodic non-chiral ILW equation, together with its soliton solutions governed by the elliptic CMS model.
99 - Edwin Langmann 2007
There exists a large class of quantum many-body systems of Calogero-Sutherland type where all particles can have different masses and coupling constants and which nevertheless are such that one can construct a complete (in a certain sense) set of exa ct eigenfunctions and corresponding eigenvalues, explicitly. Of course there is a catch to this result: if one insists on these eigenfunctions to be square integrable then the corresponding Hamiltonian is necessarily non-hermitean (and thus provides an example of an exactly solvable PT-symmetric quantum-many body system), and if one insists on the Hamiltonian to be hermitean then the eigenfunctions are singular and thus not acceptable as quantum mechanical eigenfunctions. The standard Calogero-Sutherland Hamiltonian is special due to the existence of an integral operator which allows to transform these singular eigenfunctions into regular ones.
132 - Jonas Blom , Edwin Langmann 1998
We find and solve a large class of integrable dynamical systems which includes Calogero-Sutherland models and various novel generalizations thereof. In general they describe $N$ interacting particles moving on a circle and coupled to an arbitrary num ber, $m$, of $su(N)$ spin degrees of freedom with interactions which depend on arbitrary real parameters $x_j$, $j=1,2,...,m$. We derive these models from SU(N) Yang-Mills gauge theory coupled to non-dynamic matter and on spacetime which is a cylinder. This relation to gauge theories is used to prove integrability, to construct conservation laws, and solve these models.
We present a restricted path integral approach to the 2D and 3D repulsive Hubbard model. In this approach the partition function is approximated by restricting the summation over all states to a (small) subclass which is chosen such as to well repres ent the important states. This procedure generalizes mean field theory and can be systematically improved by including more states or fluctuations. We analyze in detail the simplest of these approximations which corresponds to summing over states with local antiferromagnetic (AF) order. If in the states considered the AF order changes sufficiently little in space and time, the path integral becomes a finite dimensional integral for which the saddle point evaluation is exact. This leads to generalized mean field equations allowing for the possibility of more than one relevant saddle points. In a big parameter regime (both in temperature and filling), we find that this integral has {em two} relevant saddle points, one corresponding to finite AF order and the other without. These degenerate saddle points describe a phase of AF ordered fermions coexisting with free, metallic fermions. We argue that this mixed phase is a simple mean field description of a variety of possible inhomogeneous states, appropriate on length scales where these states appear homogeneous. We sketch systematic refinements of this approximation which can give more detailed descriptions of the system.
173 - Edwin Langmann 1996
I review results from recent investigations of anomalies in fermion--Yang Mills systems in which basic notions from noncommutative geometry (NCG) where found to naturally appear. The general theme is that derivations of anomalies from quantum field t heory lead to objects which have a natural interpretation as generalization of de Rham forms to NCG, and that this allows a geometric interpretation of anomaly derivations which is useful e.g. for making these calculations efficient. This paper is intended as selfcontained introduction to this line of ideas, including a review of some basic facts about anomalies. I first explain the notions from NCG needed and then discuss several different anomaly calculations: Schwinger terms in 1+1 and 3+1 dimensional current algebras, Chern--Simons terms from effective fermion actions in arbitrary odd dimensions. I also discuss the descent equations which summarize much of the geometric structure of anomalies, and I describe that these have a natural generalization to NCG which summarize the corresponding structures on the level of quantum field theory. Contribution to Proceedings of workshop `New Ideas in the Theory of Fundamental Interactions, Szczyrk, Poland 1995; to appear in Acta Physica Polonica B.
78 - Edwin Langmann 1995
Consistent Yang--Mills anomalies $intom_{2n-k}^{k-1}$ ($ninN$, $ k=1,2, ldots ,2n$) as described collectively by Zuminos descent equations $deltaom_{2n-k}^{k-1}+ddom_{2n-k-1}^{k}=0$ starting with the Chern character $Ch_{2n}=ddom_{2n-1}^{0}$ of a pri ncipal $SU(N)$ bundle over a $2n$ dimensional manifold are considered (i.e. $intom_{2n-k}^{k-1}$ are the Chern--Simons terms ($k=1$), axial anomalies ($k=2$), Schwinger terms ($k=3$) etc. in $(2n-k)$ dimensions). A generalization in the spirit of Connes noncommutative geometry using a minimum of data is found. For an arbitrary graded differential algebra $CC=bigoplus_{k=0}^infty CC^{(k)}$ with exterior differentiation $dd$, form valued functions $Ch_{2n}: CC^{(1)}to CC^{(2n)}$ and $om_{2n-k}^{k-1}: underbrace{CC^{(0)}timescdots times CC^{(0)}}_{mbox{{small $(k-1)$ times}}} times CC^{(1)}to CC^{(2n-k)}$ are constructed which are connected by generalized descent equations $deltaom_{2n-k}^{k-1}+ddom_{2n-k-1}^{k}=(cdots)$. Here $Ch_{2n}= (F_A)^n$ where $F_A=dd(A)+A^2$ for $AinCC^{(1)}$, and $(cdots)$ is not zero but a sum of graded commutators which vanish under integrations (traces). The problem of constructing Yang--Mills anomalies on a given graded differential algebra is thereby reduced to finding an interesting integration $int$ on it. Examples for graded differential algebras with such integrations are given and thereby noncommutative generalizations of Yang--Mills anomalies are found.
125 - Edwin Langmann 1995
I discuss examples where basic structures from Connes noncommutative geometry naturally arise in quantum field theory. The discussion is based on recent work, partly collaboration with J. Mickelsson.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا