ترغب بنشر مسار تعليمي؟ اضغط هنا

We put active galactic nuclei (AGNs) with low-mass black holes on the fundamental plane of black hole accretion---the plane that relates X-ray emission, radio emission, and mass of an accreting black hole---to test whether or not the relation is univ ersal for both stellar-mass and supermassive black holes. We use new Chandra X-ray and Very Large Array radio observations of a sample of black holes with masses less than $10^{6.3} M_{scriptscriptstyle odot}$, which have the best leverage for determining whether supermassive black holes and stellar-mass black holes belong on the same plane. Our results suggest that the two different classes of black holes both belong on the same relation. These results allow us to conclude that the fundamental plane is suitable for use in estimating supermassive black hole masses smaller than $sim 10^7 M_{scriptscriptstyle odot}$, in testing for intermediate-mass black holes, and in estimating masses at high accretion rates.
Broad iron emission lines are observed in many accreting systems from black holes in AGN and X-ray binaries to neutron star low-mass X-ray binaries. The origin of the line broadening is often interpreted as due to dynamical broadening and relativisti c effects. However, alternative interpretations have been proposed, included broadening due to Compton scattering in a wind or accretion disk atmosphere. Here we explore the observational signatures expected from broadening in a wind, in particular that the iron line width should increase with an increase in the column density of the absorber (due to an increase in the number of scatterings). We study the data from three neutron star low-mass X-ray binaries where both a broad iron emission line and absorption lines are seen simultaneously, and show that there is no significant correlation between line width and column density. This favors an inner disk origin for the line broadening rather than scattering in a wind.
We present Chandra observations of 12 galaxies that contain supermassive black holes with dynamical mass measurements. Each galaxy was observed for 30 ksec and resulted in a total of 68 point source detections in the target galaxies including superma ssive black hole sources, ultraluminous X-ray sources, and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2--10 keV band X-ray luminosities of the SMBH sources range from $10^{-8}$ to $10^{-6}$, and the power-law slopes are centered at $sim2$ with a slight trend towards steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which six are likely ($>90%$ chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3--10 keV band of $1.0_{-0.3}^{+0.6} times 10^{40}$ erg/s.
286 - Jon M. Miller 2011
Accretion disk winds are revealed in Chandra gratings spectra of black holes. The winds are hot and highly ionized (typically composed of He-like and H-like charge states), and show modest blue-shifts. Similar line spectra are sometimes seen in dippi ng low-mass X-ray binaries, which are likely viewed edge-on; however, that absorption is tied to structures in the outer disk, and blue-shifts are not typically observed. Here we report the detection of blue-shifted He-like Fe XXV (3100 +/- 400 km/s) and H-like Fe XXVI (1000 +/- 200 km/s) absorption lines in a Chandra/HETG spectrum of the transient pulsar and low-mass X-ray binary IGR J17480-2446 in Terzan 5. These features indicate a disk wind with at least superficial similarities to those observed in stellar-mass black holes. The wind does not vary strongly with numerous weak X-ray bursts or flares. A broad Fe K emission line is detected in the spectrum, and fits with different line models suggest that the inner accretion disk in this system may be truncated. If the stellar magnetic field truncates the disk, a field strength of B = 0.7-4.0 E+9 Gauss is implied, which is in line with estimates based on X-ray timing techniques. We discuss our findings in the context of accretion flows onto neutron stars and stellar-mass black holes.
235 - Kayhan Gultekin 2009
Black hole accretion and jet production are areas of intensive study in astrophysics. Recent work has found a relation between radio luminosity, X-ray luminosity, and black hole mass. With the assumption that radio and X-ray luminosity are suitable p roxies for jet power and accretion power, respectively, a broad fundamental connection between accretion and jet production is implied. In an effort to refine these links and enhance their power, we have explored the above relations exclusively among black holes with direct, dynamical mass-measurements. This approach not only eliminates systematic errors incurred through the use of secondary mass measurements, but also effectively restricts the range of distances considered to a volume-limited sample. Further, we have exclusively used archival data from the Chandra X-ray Observatory to best isolate nuclear sources. We find log(L_R) = (4.80 +/- 0.24) + (0.78 +/- 0.27) log(M_BH) + (0.67 +/- 0.12) log(L_X), in broad agreement with prior efforts. Owing to the nature of our sample, the plane can be turned into an effective mass predictor. When the full sample is considered, masses are predicted less accurately than with the well-known M-sigma relation. If obscured AGN are excluded, the plane is potentially a better predictor than other scaling measures.
In quasi-persistent neutron star transients, long outbursts cause the neutron star crust to be heated out of thermal equilibrium with the rest of the star. During quiescence, the crust then cools back down. Such crustal cooling has been observed in t wo quasi-persistent sources: KS 1731-260 and MXB 1659-29. Here we present an additional Chandra observation of MXB 1659-29 in quiescence, which extends the baseline of monitoring to 6.6 yr after the end of the outburst. This new observation strongly suggests that the crust has thermally relaxed, with the temperature remaining consistent over 1000 days. Fitting the temperature cooling curve with an exponential plus constant model we determine an e-folding timescale of 465 +/- 25 days, with the crust cooling to a constant surface temperature of kT = 54 +/- 2 eV (assuming D=10 kpc). From this, we infer a core temperature in the range 3.5E7-8.3E7 K (assuming D=10 kpc), with the uncertainty due to the surface composition. Importantly, we tested two neutron star atmosphere models as well as a blackbody model, and found that the thermal relaxation time of the crust is independent of the chosen model and the assumed distance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا