ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - Edward S. Letzter 2019
In 1992, following earlier conjectures of Lichtman and Makar-Limanov, Klein conjectured that a noncommutative domain must contain a free, multiplicative, noncyclic subsemigroup. He verified the conjecture when the center is uncountable. In this note we consider the existence (or not) of free subsemigroups in associative $k$-algebras $R$, where $k$ is a field not algebraic over a finite subfield. We show that $R$ contains a free noncyclic subsemigroup in the following cases: (1) $R$ satisfies a polynomial identity and is noncommutative modulo its prime radical. (2) $R$ has at least one nonartinian primitive subquotient. (3) $k$ is uncountable and $R$ is noncommutative modulo its Jacobson radical. In particular, (1) and (2) verify Kleins conjecture for numerous well known classes of domains, over countable fields, not covered in the prior literature.
We continue the first and second authors study of $q$-commutative power series rings $R=k_q[[x_1,ldots,x_n]]$ and Laurent series rings $L=k_q[[x^{pm 1}_1,ldots,x^{pm 1}_n]]$, specializing to the case in which the commutation parameters $q_{ij}$ are a ll roots of unity. In this setting, $R$ is a PI algebra, and we can apply results of De Concini, Kac, and Procesi to show that $L$ is an Azumaya algebra whose degree can be inferred from the $q_{ij}$. Our main result establishes an exact criterion (dependent on the $q_{ij}$) for determining when the centers of $L$ and $R$ are commutative Laurent series and commutative power series rings, respectively. In the event this criterion is satisfied, it follows that $L$ is a unique factorization ring in the sense of Chatters and Jordan, and it further follows, by results of Dumas, Launois, Lenagan, and Rigal, that $R$ is a unique factorization ring. We thus produce new examples of complete, local, noetherian, noncommutative, unique factorization rings (that are PI domains).
74 - Edward S. Letzter 2017
We observe that a finitely generated algebraic algebra R (over a field) is finite dimensional if and only if the associated graded ring grR is right noetherian, if and only if grR has right Krull dimension, if and only if grR satisfies a polynomial identity.
164 - Edward S. Letzter 2014
For topological spaces $X$ and $Y$, a (not necessarily continuous) function $f:X rightarrow Y$ naturally induces a functor from the category of closed subsets of $X$ (with morphisms given by inclusions) to the category of closed subsets of $Y$. The f unction $f$ also naturally induces a functor from the category of closed subsets of $Y$ to the category of closed subsets of $X$. Our aim in this expository note is to show that the function $f$ is continuous if and only if the first of the above two functors is a left adjoint to the second. We thereby obtain elementary examples of adjoint pairs (apparently) not part of the standard introductory treatments of this subject.
Let A be a semprime, right noetherian ring equipped with an automorphism alpha, and let B := A[[y; alpha]] denote the corresponding skew power series ring (which is also semiprime and right noetherian). We prove that the Goldie ranks of A and B are e qual. We also record applications to induced ideals.
We study the q-commutative power series ring R:=k_q[[x_1,...,x_n]], defined by the relations x_ix_j = q_{ij}x_j x_i, for multiplicatively antisymmetric scalars q_{ij} in a field k. Our results provide a detailed account of prime ideal structure for a class of noncommutative, complete, local, noetherian domains having arbitrarily high (but finite) Krull, global, and classical Krull dimension. In particular, we prove that the prime spectrum of R is normally separated and is finitely stratified by commutative noetherian spectra. Combining this normal separation with results of Chan, Wu, Yekutieli, and Zhang, we are able to conclude that R is catenary. Following the approach of Brown and Goodearl, we also show that links between prime ideals are provided by canonical automorphisms. Moreover, for sufficiently generic q_{ij}, we find that R has only finitely many prime ideals and is a UFD (in the sense of Chatters).
388 - Edward S. Letzter 2009
We study prime ideals in skew power series rings $T:=R[[y;tau,delta]]$, for suitably conditioned right noetherian complete semilocal rings $R$, automorphisms $tau$ of $R$, and $tau$-derivations $delta$ of $R$. These rings were introduced by Venjakob, motivated by issues in noncommutative Iwasawa theory. Our main results concern Cutting Down and Lying Over. In particular, under the additional assumption that $delta = tau - id$ (a basic feature of the Iwasawa-theoretic context), we prove: If $I$ is an ideal of $R$, then there exists a prime ideal $P$ of $S$ contracting to $I$ if and only if $I$ is a $delta$-stable $tau$-prime ideal of $R$. Our approach essentially depends on two key ingredients: First, the algebras considered are zariskian (in the sense of Li and Van Oystaeyen), and so the ideals are all topologically closed. Second, topological arguments can be used to apply previous results of Goodearl and the author on skew polynomial rings.
308 - Edward S. Letzter 2008
Let $n$ be a positive integer, and let $k$ be a field (of arbitrary characteristic) accessible to symbolic computation. We describe an algorithmic test for determining whether or not a finitely presented $k$-algebra $R$ has infinitely many equivalenc e classes of semisimple representations $R to M_n(k)$, where $k$ is the algebraic closure of $k$. The test reduces the problem to computational commutative algebra over $k$, via famous results of Artin, Procesi, and Shirshov. The test is illustrated by explicit examples, with $n = 3$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا