ﻻ يوجد ملخص باللغة العربية
Let $n$ be a positive integer, and let $k$ be a field (of arbitrary characteristic) accessible to symbolic computation. We describe an algorithmic test for determining whether or not a finitely presented $k$-algebra $R$ has infinitely many equivalence classes of semisimple representations $R to M_n(k)$, where $k$ is the algebraic closure of $k$. The test reduces the problem to computational commutative algebra over $k$, via famous results of Artin, Procesi, and Shirshov. The test is illustrated by explicit examples, with $n = 3$.
We investigate ideal-semisimple and congruence-semisimple semirings. We give several new characterizations of such semirings using e-projective and e-injective semimodules. We extend several characterizations of semisimple rings to (not necessarily subtractive) commutative semirings.
We present a proof of an upper bound for the lengths of finite dimensional representations of algebras obeying a modified PBW property, including Lie algebras and quantum groups. The sharpness of the bound is proved and discussed.
We study actions of semisimple Hopf algebras H on Weyl algebras A over a field of characteristic zero. We show that the action of H on A must factor through a group algebra; in other words, if H acts inner faithfully on A, then H is cocommutative. Th
We provide the first examples of words in the free group of rank 2 which are not proper powers and for which the corresponding word maps are non-surjective on an infinite family of finite non-abelian simple groups.
Recently, by A. Elduque and A. Labra a new technique and a type of an evolution algebra are introduced. Several nilpotent evolution algebras defined in terms of bilinear forms and symmetric endomorphisms are constructed. The technique then used for t