ترغب بنشر مسار تعليمي؟ اضغط هنا

99 - Eduard Muslimov 2018
In the present paper we demonstrate the approach to use a holographic grating on a freeform surface for advanced spectrographs design. On the example POLLUX spectropolarimeter medium-UV channel we chow that such a grating can operate as a cross-dispe rser and a camera mirror at the same time. It provides the image quality high enough to reach the spectral resolving power of 126 359-133 106 between 11.5 and 195 nm, which is higher than the requirement. Also we show a possibility to use a similar element working in transmission to build an unobscured double-Schmidt spectrograph. The spectral resolving power reaches 2750 for a long slit. It is also shown that the parameters of both the gratings are feasible with the current technologies.
146 - Eduard Muslimov 2018
In the present paper we consider a family of unobscured telescope designs with curved detectors. They are based on classical two-mirror schemes -- Ritchey-Chretien, Gregorian and Couder telescopes. It is shown that all the designs provide nearly diff raction limited image quality in the visible domain for $.4^circ times .4^circ$ field of view with the f-number of 7. We also provide a brief ghost analysis and point on special features of the systems with curved detectors. Finally, the detector surface shape obtained in each case is analyzed and its technological feasibility is demonstrated.
85 - Eduard Muslimov 2018
In the present paper we consider quantitative estimation of the tolerances widening in optical systems with curved detectors. The gain in image quality allows to loosen the margins for manufacturing and assembling errors. On another hand, the require ments for the detector shape and positioning become more tight. We demonstrate both of the effects on example of two optical designs. The first one is a rotationally-symmetrical lens with focal length of 25 mm, f-ratio of 3.5 and field of view equal to 72$^circ$, working in the visible domain. The second design is a three-mirror anastigmat telescope with focal length of 250 mm, f-ratio of 2.0 and field of view equal to $4^circ times 4^circ$. In both of the cases use of curved detectors allow to increase the image quality and substantially decrease the requirements for manufacturing precision
144 - Eduard Muslimov 2018
The present paper describes the current baseline optical design of POLLUX, a high-resolution spectropolarimeter for the future LUVOIR mission. The instrument will operate in the ultraviolet (UV) domain from 90 to 390 nm in both spectropolarimetric an d pure spectroscopic modes. The working range is split between 3 channels -- far (90-124.5 nm), medium (118.5-195 nm) and near (195-390 nm) UV. Each of the channels is composed of a polarimeter followed by an echelle spectrograph consisting of a classical off-axis paraboloid collimator, echelle grating with a high grooves frequency and a cross-disperser grating operating also as a camera. The latter component integrates some advanced technologies: it is a blazed grating with a complex grooves pattern formed by holographic recording, which is manufactured on a freeform surface. One of the key features underlying the current design is the large spectral length of each order ~6 nm, which allows to record wide spectral lines without any discontinuities. The modelling results show that the optical design will provide the required spectral resolving power higher than R ~ 120,000 over the entire working range for a point source object with angular size of 30 mas. It is also shown that with the 15-m primary mirror of the LUVOIR telescope the instrument will provide an effective collecting area up to 38 569 cm 2. Such a performance will allow to perform a number of groundbreaking scientific observations. Finally, the future work and the technological risks of the design are discussed in details.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا