ﻻ يوجد ملخص باللغة العربية
In the present paper we consider a family of unobscured telescope designs with curved detectors. They are based on classical two-mirror schemes -- Ritchey-Chretien, Gregorian and Couder telescopes. It is shown that all the designs provide nearly diffraction limited image quality in the visible domain for $.4^circ times .4^circ$ field of view with the f-number of 7. We also provide a brief ghost analysis and point on special features of the systems with curved detectors. Finally, the detector surface shape obtained in each case is analyzed and its technological feasibility is demonstrated.
We consider using toroidal curved detectors to improve the performance of imaging optical systems. We demonstrate that some optical systems have an anamorphic field curvature. We consider an unobscured re-imaging three-mirror anastigmat as an example
The sensitivity of the Advanced LIGO detectors to gravitational waves can be affected by environmental disturbances external to the detectors themselves. Since the transition from the former initial LIGO phase, many improvements have been made to the
Earlier apodized-pupil Lyot coronagraphs (APLC) have been studied and developed to enable high-contrast imaging for exoplanet detection and characterization with present-day ground-based telescopes. With the current interest in the development of the
A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as
{it ProtoEXIST1} is a pathfinder for the {it EXIST-HET}, a coded aperture hard X-ray telescope with a 4.5 m$^2$ CZT detector plane a 90$times$70 degree field of view to be flown as the primary instrument on the {it EXIST} mission and is intended to m