ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent topological band theory distinguishes electronic band insulators with respect to various symmetries and topological invariants, most commonly, the time reversal symmetry and the $rm Z_2$ invariant. The interface of two topologically distinct i nsulators hosts a unique class of electronic states -- the helical states, which shortcut the gapped bulk and exhibit spin-momentum locking. The magic and so far elusive property of the helical electrons, known as topological protection, prevents them from coherent backscattering as long as the underlying symmetry is preserved. Here we present an experiment which brings to light the strength of topological protection in one-dimensional helical edge states of a $rm Z_2$ quantum spin-Hall insulator in HgTe. At low temperatures, we observe the dramatic impact of a tiny magnetic field, which results in an exponential increase of the resistance accompanied by giant mesoscopic fluctuations and a gap opening. This textbook Anderson localization scenario emerges only upon the time-reversal symmetry breaking, bringing the first direct evidence of the topological protection strength in helical edge states.
In contrast to the case of ordinary quantum Hall effect, the resistance of ballistic helical edge channels in typical quantum spin-Hall experiments is non-vanishing, additive and poorly quantized. Here we present a simple argument connecting this qua litative difference with a spin relaxation in the current/voltage leads in an experimentally relevant multi-terminal bar geometry. Both the finite lead resistance and the spin relaxation contribute to a non-vanishing four-terminal edge resistance, explaining poor quantization quality. We show that corrections to the four-terminal and two-terminal resistances in the limit of strong spin relaxation are opposite in sign, making a measurement of the spin relaxation resistance feasible, and estimate the magnitude of the effect in HgTe-based quantum wells.
Typical experimental measurement is set up as a study of the systems response to a stationary external excitation. This approach considers any random fluctuation of the signal as spurious contribution which is to be eliminated via time-averaging or, equivalently, bandwidth reduction. Beyond that lies a conceptually different paradigm -- the measurement of the systems spontaneous fluctuations. The goal of this overview article is to demonstrate how current noise measurements bring insight into hidden features of electronic transport in various mesoscopic conductors, ranging from 2D topological insulators to individual carbon nanotubes.
We investigate transport and shot noise in lateral N-TI-S contacts, where N is a normal metal, TI is a Bi-based three dimensional topological insulator (3D TI), and S is an s-type superconductor. In normal state, the devices are in the elastic diffus ive transport regime, as demonstrated by a nearly universal value of the shot noise Fano factor $F_{rm N}approx1/3$ in magnetic field and in reference normal contact. In the absence of magnetic field, we identify the Andreev reflection (AR) regime, which gives rise to the effective charge doubling in shot noise measurements. Surprisingly, the Fano factor $F_{rm AR}approx0.22pm0.02$ is considerably reduced in the AR regime compared to $F_{rm N}$, in contrast to previous AR experiments in normal metals and semiconductors. We suggest that this effect is related to a finite thermal conduction of the proximized, superconducting TI owing to a residual density of states at low energies.
We apply noise thermometry to characterize charge and thermoelectric transport in single InAs nanowires (NWs) at a bath temperature of 4.2 K. Shot noise measurements identify elastic diffusive transport in our NWs with negligible electron-phonon inte raction. This enables us to set up a measurement of the diffusion thermopower. Unlike in previous approaches, we make use of a primary electronic noise thermometry to calibrate a thermal bias across the NW. In particular, this enables us to apply a contact heating scheme, which is much more efficient in creating the thermal bias as compared to conventional substrate heating. The measured thermoelectric Seebeck coefficient exhibits strong mesoscopic fluctuations in dependence on the back-gate voltage that is used to tune the NW carrier density. We analyze the transport and thermoelectric data in terms of approximate Motts thermopower relation and to evaluate a gate-voltage to Fermi energy conversion factor.
We investigate the current noise in HgTe-based quantum wells with an inverted band structure in the regime of disordered edge transport. Consistent with previous experiments, the edge resistance strongly exceeds $h/e^2$ and weakly depends on the temp erature. The shot noise is well below the Poissonian value and characterized by the Fano factor with gate voltage and sample to sample variations in the range $0.1<F<0.3$. Given the fact that our devices are shorter than the most pessimistic estimate of the ballistic dephasing length, these observations exclude the possibility of one-dimensional helical edge transport. Instead, we suggest that a disordered multi-mode conduction is responsible for the edge transport in our experiment.
We study nonlinear transport and non-equilibrium current noise in quasi-classical point contacts (PCs) defined in a low-density high-quality two-dimensional electron system in GaAs. At not too high bias voltages $V$ across the PC the noise temperatur e is determined by a Joule heat power and almost independent on the PC resistance that can be associated with a self-heating of the electronic system. This commonly accepted scenario breaks down at increasing $V$, where we observe extra noise accompanied by a strong decrease of the PCs differential resistance. The spectral density of the extra noise is roughly proportional to the nonlinear current contribution in the PC $delta Sapprox2F^*|edelta I|sim V^2$ with the effective Fano factor $F^*<1$, indicating that a random scattering process is involved. A small perpendicular magnetic field is found to suppress both $delta I$ and $delta S$. Our observations are consistent with a concept of a drag-like mechanism of the nonlinear transport mediated by electron-electron scattering in the leads of quasi-classical PCs.
We study a current shot noise in a macroscopic insulator based on a two-dimensional electron system in GaAs in a variable range hopping (VRH) regime. At low temperature and in a sufficiently depleted sample a shot noise close to a full Poissonian val ue is measured. This suggests an observation of a finite-size effect in shot noise in the VRH conduction and demonstrates a possibility of accurate quasiparticle charge measurements in the insulating regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا