ترغب بنشر مسار تعليمي؟ اضغط هنا

We attempt to explain the observed radio and gamma-ray emission produced in the surrounds of black holes by employing a magnetically-dominated accretion flow (MDAF) model and fast magnetic reconnection triggered by turbulence. In earlier work, standa rd disk model was used and we refine the model by focussing on the sub-Eddington regime to address the fundamental plane of black hole activity. The results do not change substantially with regard to previous work ensuring that the details of the accretion physics are not relevant in the magnetic reconnection process occurring in the corona. Rather our work puts fast magnetic reconnection events as a powerful mechanism operating in the core region, near the jet base of black hole sources on more solid ground. For microquasars and low-luminosity active galactic nuclei (LLAGNs) the observed correlation between radio emission and mass of the sources can be explained by this process. The corresponding gamma-ray emission also seems to be produced in the same core region. On the other hand, the emission from blazars and gamma-ray bursts (GRBs) cannot be correlated to core emission based on fast reconnection.
Fast magnetic reconnection events can be a very powerful mechanism operating in the core region of microquasars and AGNs. In earlier work, it has been suggested that the power released by fast reconnection events between the magnetic field lines lift ing from the inner accretion disk region and the lines anchored into the central black hole could accelerate relativistic particles and produce the observed radio emission from microquasars and low luminosity AGNs (LLAGNs). Moreover, it has been proposed that the observed correlation between the radio emission and the mass of these sources, spanning $10^{10}$ orders of magnitude in mass, might be related to this process. In the present work, we revisit this model comparing two different fast magnetic reconnection mechanisms, namely, fast reconnection driven by anomalous resistivity (AR) and by turbulence (as described in Lazarian and Vishiniac 1999). We apply the scenario above to a much larger sample of sources (including also blazars, and gamma-ray bursts - GRBs), and find that LLAGNs and microquasars do confirm the trend above. Furthermore, when driven by turbulence, not only their radio but also their gamma-ray emission can be due to magnetic power released by fast reconnection, which may accelerate particles to relativistic velocities in the core region of these sources. Thus the turbulent-driven fast reconnection model is able to reproduce better the observed emission than the AR model. On the other hand, the emission from blazars and GRBs does not follow the same trend as that of the LLAGNs and microquasars, suggesting that the radio and gamma-ray emission in these cases is produced further out along the jet, by another population of relativistic particles, as expected.
Fast magnetic reconnection events can be a very powerful mechanism operating at the jet launching region of microquasars and AGNs. We have recently found that the power released by reconnection between the magnetic field lines of the coronal inner di sk region and the lines anchored into the black hole is able to accelerate relativistic particles through a first-order Fermi process and produce the observed radio luminosity from both microquasars and low luminous AGNs (LLAGNs). We also found that the observed correlation between the radio luminosity and the mass of these sources, spanning 10^9 orders of magnitude in mass, is naturally explained by this process. In this work, assuming that the gamma-ray emission is probably originated in the same acceleration zones that produce the radio emission, we have applied the scenario above to investigate the origin of the high energy outcomes from an extensive number of sources including high (HLAGNs) and LLAGNs, microquasars and GRBs. We find correlation of our model with the gamma emission only for microquasars and a few LLAGNs, while none of the HLAGNs or GRBs are fitted, neither in radio nor in gamma. We attribute the lack of correlation of the gamma emission for most of the LLAGNs to the fact that this processed emission doesnt depend only on the local magnetic field activity around the source/accretion disk, but also on other environmental factors like the photon and density fields. We conclude that the emission from the LLAGNs and microquasars comes from the nuclear region of their sources and therefore, can be driven by nuclear magnetic activity. However, in the case of the HLAGNs and GRBs, the nuclear emission is blocked by the surrounding density and photon fields and therefore, we can only see the jet emission further out.
It was proposed earlier that the relativistic ejections observed in microquasars could be produced by violent magnetic reconnection episodes at the inner disk coronal region. Here we revisit this model, which employs a standard accretion disk descrip tion and fast magnetic reconnection theory, and discuss the role of magnetic reconnection and associated heating and particle acceleration in different jet/disk accretion systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا