ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of fast magnetic reconnection on the radio and gamma-ray emission from the nuclear regions of microquasars and low luminosity AGNs

104   0   0.0 ( 0 )
 نشر من قبل Lu\\~As Henrique Sinki Kadowaki
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fast magnetic reconnection events can be a very powerful mechanism operating in the core region of microquasars and AGNs. In earlier work, it has been suggested that the power released by fast reconnection events between the magnetic field lines lifting from the inner accretion disk region and the lines anchored into the central black hole could accelerate relativistic particles and produce the observed radio emission from microquasars and low luminosity AGNs (LLAGNs). Moreover, it has been proposed that the observed correlation between the radio emission and the mass of these sources, spanning $10^{10}$ orders of magnitude in mass, might be related to this process. In the present work, we revisit this model comparing two different fast magnetic reconnection mechanisms, namely, fast reconnection driven by anomalous resistivity (AR) and by turbulence (as described in Lazarian and Vishiniac 1999). We apply the scenario above to a much larger sample of sources (including also blazars, and gamma-ray bursts - GRBs), and find that LLAGNs and microquasars do confirm the trend above. Furthermore, when driven by turbulence, not only their radio but also their gamma-ray emission can be due to magnetic power released by fast reconnection, which may accelerate particles to relativistic velocities in the core region of these sources. Thus the turbulent-driven fast reconnection model is able to reproduce better the observed emission than the AR model. On the other hand, the emission from blazars and GRBs does not follow the same trend as that of the LLAGNs and microquasars, suggesting that the radio and gamma-ray emission in these cases is produced further out along the jet, by another population of relativistic particles, as expected.



قيم البحث

اقرأ أيضاً

Fast magnetic reconnection events can be a very powerful mechanism operating at the jet launching region of microquasars and AGNs. We have recently found that the power released by reconnection between the magnetic field lines of the coronal inner di sk region and the lines anchored into the black hole is able to accelerate relativistic particles through a first-order Fermi process and produce the observed radio luminosity from both microquasars and low luminous AGNs (LLAGNs). We also found that the observed correlation between the radio luminosity and the mass of these sources, spanning 10^9 orders of magnitude in mass, is naturally explained by this process. In this work, assuming that the gamma-ray emission is probably originated in the same acceleration zones that produce the radio emission, we have applied the scenario above to investigate the origin of the high energy outcomes from an extensive number of sources including high (HLAGNs) and LLAGNs, microquasars and GRBs. We find correlation of our model with the gamma emission only for microquasars and a few LLAGNs, while none of the HLAGNs or GRBs are fitted, neither in radio nor in gamma. We attribute the lack of correlation of the gamma emission for most of the LLAGNs to the fact that this processed emission doesnt depend only on the local magnetic field activity around the source/accretion disk, but also on other environmental factors like the photon and density fields. We conclude that the emission from the LLAGNs and microquasars comes from the nuclear region of their sources and therefore, can be driven by nuclear magnetic activity. However, in the case of the HLAGNs and GRBs, the nuclear emission is blocked by the surrounding density and photon fields and therefore, we can only see the jet emission further out.
We attempt to explain the observed radio and gamma-ray emission produced in the surrounds of black holes by employing a magnetically-dominated accretion flow (MDAF) model and fast magnetic reconnection triggered by turbulence. In earlier work, standa rd disk model was used and we refine the model by focussing on the sub-Eddington regime to address the fundamental plane of black hole activity. The results do not change substantially with regard to previous work ensuring that the details of the accretion physics are not relevant in the magnetic reconnection process occurring in the corona. Rather our work puts fast magnetic reconnection events as a powerful mechanism operating in the core region, near the jet base of black hole sources on more solid ground. For microquasars and low-luminosity active galactic nuclei (LLAGNs) the observed correlation between radio emission and mass of the sources can be explained by this process. The corresponding gamma-ray emission also seems to be produced in the same core region. On the other hand, the emission from blazars and gamma-ray bursts (GRBs) cannot be correlated to core emission based on fast reconnection.
Fast radio bursts (FRBs) are one of the most exciting new mysteries of astrophysics. Their origin is still unknown, but recent observations seems to link them to Soft Gamma Repeaters and, in particular, to magnetar giant flares (MGFs). The recent det ection of a MGF at GeV energies by the textit{Fermi} Large Area Telescope (LAT) motivated the search for GeV counterparts to the >100 currently known FRBs. Taking advantage of more than 12 years of textit{Fermi}-LAT data, we perform a search for gamma-ray emission from all the reported repeating and non-repeating FRBs. We analyse on different-time scales the textit{Fermi}-LAT data of each individual source separately, including a cumulative analysis on the repeating ones. In addition, we perform the first stacking analysis at GeV energies of this class of sources in order to constrain the gamma-ray properties of the FRBs that are undetected at high energies. The stacking analysis is a powerful method that allow a possible detection from below-threshold FRBs providing important information on these objects. In this talk we present the preliminary results of our study and we discuss their implications for the predictions of gamma-ray emission from this class of sources
Blazars are a sub-category of radio-loud active galactic nuclei with relativistic jets pointing towards to the observer. They are well-known for their non-thermal variable emission, which practically extends over the whole electromagnetic spectrum. D espite the plethora of multi-wavelength observations, the issue about the origin of the $gamma$-ray and radio emission in blazar jets remains unsettled. Here, we construct a parametric leptonic model for studying the connection between the $gamma$-ray and radio emission in both steady-state and flaring states of blazars. Assuming that relativistic electrons are injected continuously at a fixed distance from the black hole, we numerically study the evolution of their population as it propagates to larger distances while losing energy due to expansion and radiative cooling. In this framework, $gamma$-ray photons are naturally produced at small distances (e.g. $10^{-3}$ pc) when the electrons are still very energetic, whereas the radio emission is produced at larger distances (e.g. $1$ pc), after the electrons have cooled and the emitting region has become optically thin to synchrotron self-absorption due to expansion. We present preliminary results of our numerical investigation for the steady-state jet emission and the predicted time lags between $gamma$-rays and radio during flares.
The evolutionary stage of a powerful radio source originated by an AGN is related to its linear size. In this context, compact symmetric objects (CSOs), which are powerful and intrinsically small objects, should represent the young stage in the indiv idual radio source life. However, the fraction of young radio sources in flux density-limited samples is much higher than what expected from the number counts of large radio sources.This indicates that a significant fraction of young radio sources does not develop to the classical Fanaroff-Riley radio galaxies,suggesting an intermittent jet activity. As the radio jets are expanding within the dense and inhomogeneous interstellar medium,the ambient may play a role in the jet growth, for example slowing down or even disrupting its expansion when a jet-cloud interaction takes place. Moreover, this environment may provide the thermal seed photons that scattered by the lobes electrons may be responsible for high energy emission, detectable by Fermi-LAT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا