ترغب بنشر مسار تعليمي؟ اضغط هنا

61 - E.J. Nunes-Pereira 2015
An analytical representation for the spatial and temporal dynamics of the simplest of the diffusions -- Bronwian diffusion in an homogeneous slab geometry, with radial symmetry -- is presented. This representation is useful since it describes the tim e-resolved (as well as stationary) radial profiles, for point-like external excitation, which are more important in practical experimental situations than the case of plane-wave external excitation. The analytical representation can be used, under linear system response conditions, to obtain the full dynamics for any spatial and temporal profiles of initial perturbation of the system. Its main value is the quantitative accounting of absorption in the spatial distributions. This can contribute to obtain unambiguous conclusions in reports of Anderson localization of classical waves in three dimensions.
A computational model study for complete frequency redistribution linear incoherent two-level atomic radiation trapping in optically dense media using the multiple scattering representation is presented. This model study discuss at length the influen ce of the spectral distributions, overall opacity and emission quantum yield to trapping distorted ensemble quantities stressing physical insight and with a non-specialist audience in mind. Macroscopic reemission yield, lifetime, steady state spectra and spatial distributions are calculated as a function of intrinsic emission yield, opacity and external excitation mode for Doppler, Lorentz and Voigt lineshapes. The work could constitute the basis for a final undergraduate or beginning graduate project in computational physics instruction and implements the analytical developments of the previous instalment of this contribution.
A simple stochastic formulation of the multiple scattering representation solution of the classical linear incoherent trapping problem is presented for a broad audience. A clear connection with the alternative Holsteins solution ansatz is emphasized by the (re)interpretation of the fundamental mode as the one associated with a relaxed nonchanging spatial distribution of excitation. Expressions for overall relaxation parameters (ensemble emission yield and lifetime) as well as time-resolved (decay and spatial distribution) and steady-state quantities (spectra and spatial distribution) are given with the fundamental mode contribution singled out. The multiple scattering representation is advocated for final undergraduate and beginning graduate physics instruction based on physical insight and computation feasibility. This will be illustrated in the following instalment of this contribution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا