ترغب بنشر مسار تعليمي؟ اضغط هنا

Intermediate mass protostarsprovide a bridge between theories of low- and high-mass star formation. Emerging molecular outflows can be used to determine the influence of fragmentation and multiplicity on protostellar evolution through the correlation of outflow forces of intermediate mass protostars with the luminosity. The aim of this paper is to derive outflow forces from outflows of six intermediate mass protostellar regions and validate the apparent correlation between total luminosity and outflow force seen in earlier work, as well as remove uncertainties caused by different methodology. By comparing CO 6--5 observations obtained with APEX with non-LTE radiative transfer model predictions, optical depths, temperatures, densities of the gas of the molecular outflows are derived. Outflow forces, dynamical timescales and kinetic luminosities are subsequently calculated. Outflow parameters, including the forces, were derived for all sources. Temperatures in excess of 50 K were found for all flows, in line with recent low-mass results. However, comparison with other studies could not corroborate conclusions from earlier work on intermediate mass protostars which hypothesized that fragmentation enhances outflow forces in clustered intermediate mass star formation. Any enhancement in comparison with the classical relation between outflow force and luminosity can be attributed the use of a higher excitation line and improvement in methods; They are in line with results from low-mass protostars using similar techniques. The role of fragmentation on outflows is an important ingredient to understand clustered star formation and the link between low and high-mass star formation. However, detailed information on spatial scales of a few 100 AU, covering all individual members is needed to make the necessary progress.
Context: Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance in various parts of the protostar. Method: We present textit{Herschel} HIFI spectra of multiple water-transitions towards 29 nearby Class 0/I protostars as part of the WISH Survey. These are decomposed into different Gaussian components, with each related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then constrain the excitation conditions present in the two outflow-related components. Results: Water emission is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H$_{2}$ densities of order 10$^{5}-$10$^{8}$,cm$^{-3}$ and H$_{2}$O column densities of order 10$^{16}-$10$^{18}$,cm$^{-2}$. H$_{2}$O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10-200,AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1-30,AU. Conclusions: Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. Class I sources have similar excitation conditions to Class 0 sources, but generally smaller line-widths and emitting region sizes. We suggest that it is the velocity of the wind driving the outflow, rather than the decrease in envelope density or mass, that is the cause of the decrease in H$_{2}$O intensity between Class 0 and I.
Protostars interact with their surroundings through jets and winds impacting on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low-mass young stellar objects in order to characterize shocks and the possible role of ultraviolet radiation in the immediate protostellar environment. Herschel/PACS spectral maps of 22 objects in the Perseus molecular cloud were obtained as part of the `William Herschel Line Legacy survey. Line emission from H$_mathrm{2}$O, CO, and OH is tested against shock models from the literature. Observed line ratios are remarkably similar and do not show variations with source physical parameters. Observations show good agreement with the shock models when line ratios of the same species are compared. Ratios of various H$_mathrm{2}$O lines provide a particularly good diagnostic of pre-shock gas densities, $n_mathrm{H}sim10^{5}$ cm$^{-3}$, in agreement with typical densities obtained from observations of the post-shock gas. The corresponding shock velocities, obtained from comparison with CO line ratios, are above 20 km,s$^{-1}$. However, the observations consistently show one-to-two orders of magnitude lower H$_mathrm{2}$O-to-CO and H$_mathrm{2}$O-to-OH line ratios than predicted by the existing shock models. The overestimated model H$_mathrm{2}$O fluxes are most likely caused by an overabundance of H$_mathrm{2}$O in the models since the excitation is well-reproduced. Illumination of the shocked material by ultraviolet photons produced either in the star-disk system or, more locally, in the shock, would decrease the H$_mathrm{2}$O abundances and reconcile the models with observations. Detections of hot H$_mathrm{2}$O and strong OH lines support this scenario.
Herschel/HIFI spectroscopic observations of CO J=10-9, CO J=16-15 and [CII] towards HD 100546 are presented. The objective is to resolve the velocity profile of the lines to address the emitting region of the transitions and directly probe the distri bution of warm gas in the disk. The spectra reveal double-peaked CO line profiles centered on the systemic velocity, consistent with a disk origin. The J=16-15 line profile is broader than that of the J=10-9 line, which in turn is broader than those of lower J transitions (6-5, 3-2, observed with APEX), thus showing a clear temperature gradient of the gas with radius. A power-law flat disk model is used to fit the CO line profiles and the CO rotational ladder simultaneously, yielding a temperature of T_0=1100 pm 350 K (at r_0 = 13 AU) and an index of q=0.85 pm 0.1 for the temperature radial gradient. This indicates that the gas has a steeper radial temperature gradient than the dust (mean q_{dust} ~ 0.5), providing further proof of the thermal decoupling of gas and dust at the disk heights where the CO lines form. The [CII] line profile shows a strong single-peaked profile red-shifted by 0.5 km s-1 compared to the systemic velocity. We conclude that the bulk of the [CII] emission has a non-disk origin (e.g., remnant envelope or diffuse cloud).
[abridged] We present far-infrared spectroscopic observations of PMS stars taken with Herschel/PACS as part of the DIGIT key project. The sample includes 22 Herbig AeBe and 8 T Tauri sources. Multiple atomic fine structure and molecular lines are det ected at the source position: [OI], [CII], CO, OH, H_2O, CH^+. The most common feature is the [OI] 63micron line detected in almost all of the sources followed by OH. In contrast with CO, OH is detected toward both Herbig AeBe groups (flared and non-flared sources). An isothermal LTE slab model fit to the OH lines indicates column densities of 10^13 < N_OH < 10^16 cm^-2, emitting radii 15 < r < 100 AU and excitation temperatures 100 < T_ex < 400 K. The OH emission thus comes from a warm layer in the disk at intermediate stellar distances. Warm H_2O emission is detected through multiple lines toward the T Tauri systems AS 205, DG Tau, S CrA and RNO 90 and three Herbig AeBe systems HD 104237, HD 142527, HD 163296 (through line stacking). Overall, Herbig AeBe sources have higher OH/H_2O abundance ratios across the disk than do T Tauri disks, from near- to far-infrared wavelengths. Far-infrared CH^+ emission is detected toward HD 100546 and HD 97048. The slab model suggests moderate excitation (T_ex ~ 100 K) and compact (r ~ 60 AU) emission in the case of HD 100546. The [CII] emission is spatially extended in all sources where the line is detected. This suggests that not all [CII] emission is associated with the disk and that there is a substantial contribution from diffuse material around the young stars. The flux ratios of the atomic fine structure lines are consistent with a disk origin for the oxygen lines for most of the sources.
Herschel-HIFI spectra of H2O towards low-mass protostars show a distinct velocity component not seen in observations from the ground of CO or other species. The aim is to characterise this component in terms of excitation conditions and physical orig in. A velocity component with an offset of ~10 km/s detected in spectra of the H2O 110-101 557 GHz transition towards six low-mass protostars in the Water in star-forming regions with Herschel (WISH) programme is also seen in higher-excited H2O lines. The emission from this component is quantified and excitation conditions are inferred using 1D slab models. Data are compared to observations of hydrides (high-J CO, OH+, CH+, C+, OH) where the same component is uniquely detected. The velocity component is detected in all 6 targeted H2O transitions (Eup~50-250K), and in CO 16-15 towards one source, Ser SMM1. Inferred excitation conditions imply that the emission arises in dense (n~5x10^6-10^8 cm^-3) and hot (T~750K) gas. The H2O and CO column densities are ~10^16 and 10^18 cm^-2, respectively, implying a low H2O abundance of 10^-2 with respect to CO. The high column densities of ions such as OH+ and CH+ (both ~10^13 cm^-2) indicate an origin close to the protostar where the UV field is strong enough that these species are abundant. The estimated radius of the emitting region is 100AU. This component likely arises in dissociative shocks close to the protostar, an interpretation corroborated by a comparison with models of such shocks. Furthermore, one of the sources, IRAS4A, shows temporal variability in the offset component over a period of two years which is expected from shocks in dense media. High-J CO gas detected with Herschel-PACS with Trot~700K is identified as arising in the same component and traces the part of the shock where H2 reforms. Thus, H2O reveals new dynamical components, even on small spatial scales in low-mass protostars.
(Abridged) Far-infrared Herschel-PACS spectra of 18 low-mass protostars of various luminosities and evolutionary stages are studied. We quantify their far-infrared line emission and the contribution of different atomic and molecular species to the ga s cooling budget during protostellar evolution. We also determine the spatial extent of the emission and investigate the underlying excitation conditions. Most of the protostars in our sample show strong atomic and molecular far-infrared emission. Water is detected in 17 objects, including 5 Class I sources. The high-excitation H2O line at 63.3 micron is detected in 7 sources. CO transitions from J=14-13 up to 49-48 are found and show two distinct temperature components on Boltzmann diagrams with rotational temperatures of ~350 K and ~700 K. H2O has typical excitation temperatures of ~150 K. Emission from both Class 0 and I sources is usually spatially extended along the outflow direction but with a pattern depending on the species and the transition. The H2O line fluxes correlate strongly with those of the high-J CO lines, as well as with the bolometric luminosity and envelope mass. They correlate less strongly with OH and not with [OI] fluxes. The PACS data probe at least two physical components. The H2O and CO emission likely arises in non-dissociative (irradiated) shocks along the outflow walls with a range of pre-shock densities. Some OH is also associated with this component, likely resulting from H2O photodissociation. UV-heated gas contributes only a minor fraction to the CO emission observed by PACS, based on the strong correlation between the shock-dominated CO 24-23 line and the CO 14-13 line. [OI] and some of the OH emission probe dissociative shocks in the inner envelope. The total far-infrared cooling is dominated by H2O and CO, with [OI] increasing for Class I sources.
(Abridged) Water is a key tracer of dynamics and chemistry in low-mass protostars, but spectrally resolved observations have so far been limited in sensitivity and angular resolution. In this first systematic survey of spectrally resolved water emiss ion in low-mass protostellar objects, H2O was observed in the ground-state transition at 557 GHz with HIFI on Herschel in 29 embedded Class 0 and I protostars. Complementary far-IR and sub-mm continuum data (including PACS data from our program) are used to constrain the spectral energy distribution of each source. H2O intensities are compared to inferred envelope and outflow properties and CO 3-2 emission. H2O emission is detected in all objects except one. The line profiles are complex and consist of several kinematic components. The profiles are typically dominated by a broad Gaussian emission feature, indicating that the bulk of the water emission arises in outflows, not the quiescent envelope. Several sources show multiple shock components in either emission or absorption, thus constraining the internal geometry of the system. Furthermore, the components include inverse P-Cygni profiles in 7 sources (6 Class 0, 1 Class I) indicative of infalling envelopes, and regular P-Cygni profiles in 4 sources (3 Class I, 1 Class 0) indicative of expanding envelopes. Bullets moving at >50 km/s are seen in 4 Class 0 sources; 3 of these are new detections. In the outflow, the H2O/CO abundance ratio as a function of velocity is nearly the same for all sources, increasing from 10^-3 at <5 km/s to >10^-1 at >10 km/s. The H2O abundance in the outer envelope is low, ~10^-10. The different H2O profile components show a clear evolutionary trend: in the Class 0 sources, emission is dominated by outflow components originating inside an infalling envelope. When the infall diminishes during the Class I phase, the outflow weakens and H2O emission disappears.
Herschel-HIFI observations of water in the low-mass star-forming object L1448-MM, known for its prominent outflow, are presented, as obtained within the `Water in star-forming regions with Herschel (WISH) key programme. Six H2-16O lines are targeted and detected (E_up/k_B ~ 50-250 K), as is CO J= 10-9 (E_up/k_B ~ 305 K), and tentatively H2-18O 110-101 at 548 GHz. All lines show strong emission in the bullets at |v| > 50 km/s from the source velocity, in addition to a broad, central component and narrow absorption. The bullets are seen much more prominently in H$_2$O than in CO with respect to the central component, and show little variation with excitation in H2O profile shape. Excitation conditions in the bullets derived from CO lines imply a temperature >150 K and density >10^5 cm^-3, similar to that of the broad component. The H2O/CO abundance ratio is similar in the bullets and the broad component, ~ 0.05-1.0, in spite of their different origins in the molecular jet and the interaction between the outflow and the envelope. The high H2O abundance indicates that the bullets are H2 rich. The H2O cooling in the bullets and the broad component is similar and higher than the CO cooling in the same components. These data illustrate the power of Herschel-HIFI to disentangle different dynamical components in low-mass star-forming objects and determine their excitation and chemical conditions.
`Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structure of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted covering a wide range of luminosities and evolutionary stages, from cold pre-stellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, H218O and chemically related species. An overview of the scientific motivation and observational strategy of the program is given together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained which have profound implications for our understanding of grain growth and mixing in disks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا