ترغب بنشر مسار تعليمي؟ اضغط هنا

146 - A. Barrat , A. Puglisi , E. Trizac 2008
A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we pre sent numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.
Combining analytical and numerical methods, we study within the framework of the homogeneous non-linear Boltzmann equation, a broad class of models relevant for the dynamics of dissipative fluids, including granular gases. We use the new method prese nted in a previous paper [J. Stat. Phys. 124, 549 (2006)] and extend our results to a different heating mechanism, namely a deterministic non-linear friction force. We derive analytically the high energy tail of the velocity distribution and compare the theoretical predictions with high precision numerical simulations. Stretched exponential forms are obtained when the non-equilibrium steady state is stable. We derive sub-leading corrections and emphasize their relevance. In marginal stability cases, power-law behaviors arise, with exponents obtained as the roots of transcendental equations. We also consider some simple BGK (Bhatnagar, Gross, Krook) models, driven by similar heating devices, to test the robustness of our predictions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا